Síntesis y caracterización de dos materiales azo: Comparación entre un compuesto sulfonado y su análogo no sulfonado

Autores/as

  • Byron Lopez Mayorga Universidad de San Carlos de Guatemala https://orcid.org/0000-0001-7165-6283
  • Edward M. A. Guerrero-Gutiérrez Escuela de Ingeniería Química, Facultad de Ingeniería, Universidad de San Carlos de Guatemala https://orcid.org/0000-0002-5778-3953
  • Allan Vásquez-Bolaños Escuela de Química
  • José Castillo-Arroyave Escuela de Química, Facultad de Ciencias Químicas y Farmacia, Universidad de San Carlos de Guatemala
  • Heriberto Pfeiffer https://orcid.org/0000-0002-6623-5780

DOI:

https://doi.org/10.36829/63CTS.v11i1.1596

Palabras clave:

Grupo sulfónico, histéresis, compuesto azo, degradación térmica

Resumen

Esta investigación tuvo como objetivo la síntesis y caracterización de dos nuevos materiales azo obtenidos mediante una reacción clásica de diazotización. El primer material (A1) se sintetizó a partir de la reacción entre fluoroglucinol con p-fenilendiamina, mientras que el segundo (A2) se obtuvo a partir de la reacción entre fluoroglucinol con ácido 2,5-diaminobencensulfónico. Estos materiales fueron caracterizados químicamente mediante espectroscopia infrarroja (FTIR-ATR). Adicionalmente, se evaluó su estabilidad térmica por medio análisis termogravimétrico (TGA) y su estructura cristalina, utilizando difracción de rayos X de polvos (XRD). Los resultados muestran que A2 posee una mayor capacidad de absorción de agua atribuible a los grupos sulfónicos. Además, ambos materiales empiezan a degradarse a partir de los 140 °C y son de naturaleza amorfa, conun área de superficie menor a 1 m2g-1. Destaca que A2 posee hasta un orden de magnitud mayor que A1 para la absorción de N2. Ambos materiales mostraron características de adsorción de nitrógeno de isoterma tipo III, lo que sugiere bajas energías de interacción y propiedades de materiales no porosos.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Ansari, M., Alam, A., Bera, R., Hassan, A., Goswami, S., & Das, N. (2020). Synthesis, characterization and adsorption studies of a novel triptycene based hydroxyl azo- nanoporous polymer for environmental remediation. Journal of Environmental Chemical Engineering, 8(2), Artículo 103558. https://doi.org/10.1016/j.jece.2019.103558

Avilés-Barreto, S. L., & Suleiman, D. (2013). Transport properties of sulfonated poly (styrene-isobutylene-styrene) membranes with counter-ion substitution. Journal of Applied Polymer Science, 129(4), 2294-2304. https://doi.org/10.1002/app.38952

Awad, A. M., Jalab, R., Benamor, A., Nasser, M. S., Ba-Abbad, M. M., El-Naas, M., & Mohammad, A. W. (2020). Adsorption of organic pollutants by nanomaterial-based adsorbents: An overview. Journal of Molecular Liquids, 301, Artículo 112335. https://doi.org/10.1016/j.molliq.2019.112335

Braun, D. E., Tocher, D. A., Price, S. L., & Griesser, U. J. (2012). The Complexity of Hydration of Phloroglucinol: A Comprehensive Structural and Thermodynamic Characterization. The Journal of Physical Chemistry B, 116(13), 3961-3972. https://doi.org/10.1021/jp211948q

Dong, S., Rene, E. R., Zhao, L., Xiaoxiu, L., & Ma, W. (2022). Design and preparation of functional azo linked polymers for the adsorptive removal of bisphenol A from water: Performance and analysis of the mechanism. Environmental Research, 206, 112601. https://doi.org/10.1016/j.envres.2021.112601

Fröschl, T., Hörmann, U., Kubiak, P., Kučerová, G., Pfanzelt, M., Weiss, C. K., Behm, R. J., Hüsing, N., Kaiser, U., Landfester, K., & Wohlfahrt-Mehrens, M. (2012). High surface area crystalline titanium dioxide: Potential and limits in electrochemical energy storage and catalysis. Chemical Society Reviews, 41(15), 5313-5360. https://doi.org/10.1039/C2CS35013K

Guerrero-Gutiérrez, E. M. A. (2021). Effect of Sulfonated Block Copolymer on the Equilibrium and Thermal Properties of Sulfonated Fluoro-block Copolymer Blend Membranes. Ciencia, Tecnología y Salud, 8(1), 57-66. https://doi.org/10.36829/63CTS.v8i1.887

Guerrero-Gutiérrez, E. M. A., Abad, M., Gaitán, I., & Guerrero, K. (2022). Efecto de las membranas con Cu+2 sobre el proceso de filtración y capacidad de biocida contra Escherichia coli. Ciencia, Tecnología y Salud, 9(1), 98-115. https://doi.org/10.36829/63CTS.v9i1.1041

Ho, M. S., Barrett, C., Paterson, J., Esteghamatian, M., Natansohn, A., & Rochon, P. (1996). Synthesis and Optical Properties of Poly{(4-nitrophenyl)[3-[N-[2-(methacryloyloxy)ethyl]-carbazolyl]] diazene}. Macromolecules, 29(13), 4613-4618. https://doi.org/10.1021/ma951432a

Huang, X.-Q., Hong, X., Lin, H., Cao, X.-M., Dang, Q., Tang, S.-B., Chen, D.-L., & Zhang, Y. (2022). Hypercrosslinked triazine-phloroglucinol hierarchical porous polymers for the effective removal of organic micropollutants. Chemical Engineering Journal, 435(Part 2), Artículo 134990. https://doi.org/10.1016/j.cej.2022.134990

Hung, L.-C., & Pan, N.-H. (2023). Using thermal analysis with kinetic calculation method to assess the thermal stability of azo compound on construction materials. Journal of Loss Prevention in the Process Industries, 84, Artículo 105107. https://doi.org/10.1016/j.jlp.2023.105107

Kazem-Rostami, M. (2020). Factors influencing the thermal stability of azo and bisazo compounds. Journal of Thermal Analysis and Calorimetry, 140(2), 613-623. https://doi.org/10.1007/s10973-019-08884-4

Kim, D.-J., & Nam, S.-Y. (2014). Characterization of Sulfonated Silica Nanocomposite Electrolyte Membranes for Fuel Cell. Journal of Nanoscience and Nanotechnology, 14(12), 8961-8963. https://doi.org/10.1166/jnn.2014.10073

Li, H.-Q., Liu, X., Zhang, Q., Li, S.-S., Liu, Y.-M., He, H.-Y., & Cao, Y. (2015). Deoxygenative coupling of nitroarenes for the synthesis of aromatic azo compounds with CO using supported gold catalysts. Chemical Communications, 51(56), 11217-11220. https://doi.org/10.1039/C5CC03134F

Li, Y., Xie, M., Wang, X., Chao, D., Liu, X., & Wang, X. (2013). Novel branched sulfonated poly(ether ether ketone) membranes for direct methanol fuel cells. International Journal of Hydrogen Energy, 38, 12051-12059. https://doi.org/10.1016/j.ijhydene.2013.06.090

López-Pardo, G. E. A., García-Guerra, C. A., Lainfiesta, R., & Guerrero-Gutiérrez, E. M. A. (2022). Caracterización colorimétrica del proceso termogravimétrico de la deshidroxilación de caolín hidrotermal y de toba. Ciencia, Tecnología y Salud, 9(1), 55-69. https://doi.org/10.36829/63CTS.v9i1.924

Lorenzo, M., Campo, J., & Picó, Y. (2018). Analytical challenges to determine emerging persistent organic pollutants in aquatic ecosystems. TrAC Trends in Analytical Chemistry, 103, 137-155. https://doi.org/10.1016/j.trac.2018.04.003

Lu, J., & Zhang, J. (2014). Facile synthesis of azo-linked porous organic frameworks via reductive homocoupling for selective CO2 capture. Journal of Materials Chemistry A, 2(34), 13831-13834. https://doi.org/10.1039/C4TA03015J

Luo, X.-S., Deng, H.-L., Chi, S., Liu, Y., & Huang, M.-H. (2021). 15N Solid-State NMR as Bright Eyes to See the Isomerization of the Azo Bond: Revision of Tris(β-hydroxyl-azo)benzene to Tris(β-keto-hydrazo)-cyclohexane in Porous Organic Polymers. The Journal of Physical Chemistry Letters, 12(29), 6767-6772. https://doi.org/10.1021/acs.jpclett.1c01750

Mandal, J., Jia, M., Overvig, A., Fu, Y., Che, E., Yu, N., & Yang, Y. (2019). Porous Polymers with Switchable Optical Transmittance for Optical and Thermal Regulation. Joule, 3(12), 3088-3099. https://doi.org/10.1016/j.joule.2019.09.016

Meyers, M. A., Mishra, A., & Benson, D. J. (2006). Mechanical properties of nanocrystalline materials. Progress in Materials Science, 51(4), 427-556. https://doi.org/10.1016/j.pmatsci.2005.08.003

Murad, A. R., Iraqi, A., Aziz, S. B., N. Abdullah, S., & Brza, M. A. (2020). Conducting polymers for optoelectronic devices and organic solar cells: A review. Polymers, 12(11), Artículo 2627. https://doi.org/10.3390/polym12112627

Peplowski, L., Szczesny, R., Skowronski, L., Krupka, A., Smokal, V., & Derkowska-Zielinska, B. (2022). Vibrational spectroscopy studies of methacrylic polymers containing heterocyclic azo dyes. Vibrational Spectroscopy, 120, Artículo 103377. https://doi.org/10.1016/j.vibspec.2022.103377

Pomonis, P. J., Petrakis, D. E., Ladavos, A. K., Kolonia, K. M., Armatas, G. S., Sklari, S. D., Dragani, P. C., Zarlaha, A., Stathopoulos, V. N., & Sdoukos, A. T. (2004). A novel method for estimating the C-values of the BET equation in the whole range. Microporous and Mesoporous Materials, 69(1), 97-107. https://doi.org/10.1016/j.micromeso.2004.01.009

Sánchez-Jiménez, P. E., Pérez-Maqueda, L. A., Perejón, A., & Criado, J. M. (2009). Combined kinetic analysis of thermal degradation of polymeric materials under any thermal pathway. Polymer Degradation and Stability, 94(11), 2079-2085. https://doi.org/10.1016/j.polymdegradstab.2009.07.006

Sava, I., Burescu, A., Stoica, I., Musteata, V., Cristea, M., Mihaila, I., Pohoata, V., & Topala, I. (2015). Properties of some azo-copolyimide thin films used in the formation of photoinduced surface relief gratings. RSC Advances, 5(14), 10125-10133. https://doi.org/10.1039/C4RA14218G

Sava, I., Hurduc, N., Sacarescu, L., Apostol, I., & Damian, V. (2013). Study of the nanostructuration capacity of some azopolymers with rigid or flexible chains. High Performance Polymers, 25(1), 13-24. https://doi.org/10.1177/0954008312454151

Selivanova, G. A. (2021). Azo chromophores for nonlinear-optical application. Russian Chemical Bulletin, 70(2), 213-238. https://doi.org/10.1007/s11172-021-3080-z

Shen, Y., Ni, W.-X., & Li, B. (2021). Porous Organic Polymer Synthesized by Green Diazo-Coupling Reaction for Adsorptive Removal of Methylene Blue. ACS Omega, 6(4), 3202-3208. https://doi.org/10.1021/acsomega.0c05634

Si, Y., & Samulski, E. T. (2008). Synthesis of Water Soluble Graphene. Nano Letters, 8(6), 1679-1682. https://doi.org/10.1021/nl080604h

Tajik, S., Beitollahi, H., Nejad, F. G., Dourandish, Z., Khalilzadeh, M. A., Jang, H. W., Venditti, R. A., Varma, R. S., & Shokouhimehr, M. (2021). Recent Developments in Polymer Nanocomposite-Based Electrochemical Sensors for Detecting Environmental Pollutants. Industrial & Engineering Chemistry Research, 60(3), 1112-1136. https://doi.org/10.1021/acs.iecr.0c04952

Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., & Sing, K. S. W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9-10), 1051-1069. https://doi.org/10.1515/pac-2014-1117

Trivedi, M. K., Branton, A., Trivedi, D., Nayak, G., Singh, R., & Jana, S. (2015). Characterization of physical, thermal and spectroscopic properties of Biofield Energy Treated p-Phenylenediamine and p-Toluidine. Environmental & Analytical Toxicology, 5(6), Artículo 1000329. https://doi.org/10.4172/2161-0525.1000329

Wang, J., He, J., Zhi, C., Luo, B., Li, X., Pan, Y., Cao, X., & Gu, H. (2014). Highly efficient synthesis of azos catalyzed by the common metal copper (0) through oxidative coupling reactions. RSC Advances, 4(32), 16607-16611. https://doi.org/10.1039/C4RA00749B

Wang, Z., He, M., Chen, B., & Hu, B. (2020). Azo-linked porous organic polymers/polydimethylsiloxane coated stir bar for extraction of benzotriazole ultraviolet absorbers from environmental water and soil samples followed by high performance liquid chromatography-diode array detection. Journal of Chromatography A, 1616, Artículo 460793. https://doi.org/10.1016/j.chroma.2019.460793

Wongsa, P., Phatikulrungsun, P., & Prathumthong, S. (2022). FT-IR characteristics, phenolic profiles and inhibitory potential against digestive enzymes of 25 herbal infusions. Scientific Reports, 12(1), Artículo 6631. https://doi.org/10.1038/s41598-022-10669-z

Zhang, T., Bai, R., Shen, J., Wang, Q., Wang, P., Yuan, J., & Fan, X. (2018). Laccase-catalyzed polymerization of diaminobenzenesulfonic acid for pH-responsive color-changing and conductive wool fabrics. Textile Research Journal, 88(19), 2258-2266. https://doi.org/10.1177/0040517517720497

Zhang, Y., Hong, X., Cao, X.-M., Huang, X.-Q., Hu, B., Ding, S.-Y., & Lin, H. (2021). Functional Porous Organic Polymers with Conjugated Triaryl Triazine as the Core for Superfast Adsorption Removal of Organic Dyes. ACS Applied Materials & Interfaces, 13(5), 6359-6366. https://doi.org/10.1021/acsami.0c21374

Zhang, Y., & Riduan, S. N. (2012). Functional porous organic polymers for heterogeneous catalysis. Chemical Society Reviews, 41(6), 2083-2094. https://doi.org/10.1039/C1CS15227K

Zhao, G., Huang, X., Tang, Z., Huang, Q., Niu, F., & Wang, X. (2018). Polymer-based nanocomposites for heavy metal ions removal from aqueous solution: A review. Polymer Chemistry, 9(26), 3562-3582. https://doi.org/10.1039/C8PY00484F

Zhao, J., Yan, G., Zhang, X., Feng, Y., Li, N., Shi, J., & Qu, X. (2022). In situ interfacial polymerization of lithiophilic COF@PP and POP@PP separators with lower shuttle effect and higher ion transport for high-performance Li–S batteries. Chemical Engineering Journal, 442, Artículo 136352. https://doi.org/10.1016/j.cej.2022.136352

Zhou, W., Yoshino, M., Kita, H., & Okamoto, K. (2001). Carbon Molecular Sieve Membranes Derived from Phenolic Resin with a Pendant Sulfonic Acid Group. Industrial & Engineering Chemistry Research, 40(22), 4801-4807. https://doi.org/10.1021/ie010402v

Descargas

Publicado

2023-06-29

Cómo citar

Lopez Mayorga, B., Guerrero-Gutiérrez, E. M. A., Vásquez-Bolaños, A., Castillo-Arroyave, J., & Pfeiffer, H. (2023). Síntesis y caracterización de dos materiales azo: Comparación entre un compuesto sulfonado y su análogo no sulfonado. Ciencia, Tecnologí­a Y Salud, 11(1), 21–34. https://doi.org/10.36829/63CTS.v11i1.1596

Número

Sección

Artículos científicos

Datos de los fondos