Efecto de las membranas con Cu+2 sobre el proceso de filtración y capacidad de biocida contra Escherichia coli

Autores/as

  • Edward M. A. Guerrero-Gutiérrez Universidad de San Carlos de Guatemala https://orcid.org/0000-0002-5778-3953
  • María Abad Universidad de San Carlos de Guatemala
  • Isabel Gaitán Universidad de San Carlos de Guatemala
  • Keila Guerrero Universidad de San Carlos de Guatemala

DOI:

https://doi.org/10.36829/63CTS.v9i1.1041

Palabras clave:

Unidades Formadoras de Colonias, fenómeno de transporte, degradación térmica, morfología

Resumen

Esta investigación estudió la preparación de membranas compuestas de celulosa y quitosano entrecruzadas con Cu(II) para determinar su efecto biocida y eficiencia en la remoción de Escherichia coli. Las membranas de quitosano se obtuvieron por medio de la técnica de evaporación del solvente. Propiedades de absorción de agua, degradación térmica y mecánicas de las membranas fueron evaluadas con el propósito de modificar la estructura química, la superficie y estudiar su impacto como agente biocida. Los resultados muestran que el Cu(II) interactúa con los grupos iónicos de las membranas que inducen un cambio estructural produciendo un aumento de 190 % en el módulo G*. Además, el catión provee estabilidad térmica a temperaturas menores de 200 ºC y produce cambios superficiales a la membrana, especialmente a la membrana de celulosa. Adicionalmente, la membrana de celulosa-Cu(II) aumentó su efecto biocida contra E. coli hasta un 96 %. El proceso de remoción por medio de la filtración aumentó 41 % con la incorporación del catión. Esta investigación muestra el efecto de la interacción del catión con grupos iónicos en la membrana que mejoran las propiedades de filtración y efecto biocida contra esta enterobacteria que puede llegar a ser patógena para el ser humano

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Edward M. A. Guerrero-Gutiérrez, Universidad de San Carlos de Guatemala

Escuela de Ingeniería Química, Facultad de Ingeniería

María Abad, Universidad de San Carlos de Guatemala

Escuela de Química Biológica, Facultad de Ciencias Químicas y Farmacia

Isabel Gaitán, Universidad de San Carlos de Guatemala

Escuela de Química Biológica, Facultad de Ciencias Químicas y Farmacia

Keila Guerrero, Universidad de San Carlos de Guatemala

Escuela de Química Biológica, Facultad de Ciencias Químicas y Farmacia

Citas

Avilés-Barreto, S. L., & Suleiman, D. (2013). Transport properties of sulfonated poly (styrene-isobutylene-styrene) membranes with counter-ion substitution. Journal of Applied Polymer Science, 129(4), 2294-2304. https://doi.org/10.1002/app.38952 DOI: https://doi.org/10.1002/app.38952

Bargeman, G. (2021). Recent developments in the preparation of improved nanofiltration membranes for extreme pH conditions. Separation and Purification Technology, 279, Artículo 119725. https://doi.org/10.1016/j.seppur.2021.119725 DOI: https://doi.org/10.1016/j.seppur.2021.119725

Bassyouni, M., Abdel-Aziz, M. H., Zoromba, M. S., Abdel-Hamid, S. M. S., & Drioli, E. (2019). A review of polymeric nanocomposite membranes for water purification. Journal of Industrial and Engineering Chemistry, 73, 19-46. https://doi.org/10.1016/j.jiec.2019.01.045 DOI: https://doi.org/10.1016/j.jiec.2019.01.045

Borkow, G., & Gabbay, J. (2005). Copper as a biocidal tool. Current Medicinal Chemistry, 12(18), 2163-2175. https://doi.org/10.2174/0929867054637617 DOI: https://doi.org/10.2174/0929867054637617

Cabral, J. P. S. (2010). Water microbiology. Bacterial pathogens and water. International Journal of Environmental Research and Public Health, 7(10), 3657-3703. https://doi.org/10.3390/ijerph7103657 DOI: https://doi.org/10.3390/ijerph7103657

Castro-Muñoz, R., & González-Valdez, J. (2019). New trends in biopolymer-based membranes for pervaporation. Molecules (Basel, Switzerland), 24(19), 3584. https://doi.org/10.3390/molecules24193584 DOI: https://doi.org/10.3390/molecules24193584

Cooper, A., Oldinski, R., Ma, H., Bryers, J. D., & Zhang, M. (2013). Chitosan-based nanofibrous membranes for antibacterial filter applications. Carbohydrate Polymers, 92(1), 254-259. https://doi.org/10.1016/j.carbpol.2012.08.114 DOI: https://doi.org/10.1016/j.carbpol.2012.08.114

Das, B., & Patra, S. (2017). Antimicrobials: Meeting the challenges of antibiotic resistance through nanotechnology. En Nanostructures for Antimicrobial Therapy (pp. 1-22). Elsevier. https://doi.org/10.1016/B978-0-323-46152-8.00001-9 DOI: https://doi.org/10.1016/B978-0-323-46152-8.00001-9

De Freitas, R. R. M., Senna, A. M., & Botaro, V. R. (2017). Influence of degree of substitution on thermal dynamic mechanical and physicochemical properties of cellulose acetate. Industrial Crops and Products, 109, 452-458. https://doi.org/10.1016/j.indcrop.2017.08.062 DOI: https://doi.org/10.1016/j.indcrop.2017.08.062

Emam, H. E., Manian, A. P., Široká, B., & Bechtold, T. (2012). Copper inclusion in cellulose using sodium d-gluconate complexes. Carbohydrate Polymers, 90(3), 1345-1352. https://doi.org/10.1016/j.carbpol.2012.07.003 DOI: https://doi.org/10.1016/j.carbpol.2012.07.003

Fane, A. G., Wang, R., & Hu, M. X. (2015). Synthetic membranes for water purification: Status and future. Angewandte Chemie - International Edition, 54(11), 3368-3386. https://doi.org/10.1002/anie.201409783 DOI: https://doi.org/10.1002/anie.201409783

Fei-Liu, X., Lin Guan, Y., Zhi Yang, D., Li, Z., & De Yao, K. (2001). Antibacterial action of chitosan and carboxymethylated chitosan. Journal of Applied Polymer Science, 79(7), 1324-1335. https://doi.org/10.1002/1097-4628(20010214)79:7<1324::AID-APP210>3.0.CO;2-L DOI: https://doi.org/10.1002/1097-4628(20010214)79:7<1324::AID-APP210>3.0.CO;2-L

Gedam, A. H., & Dongre, R. S. (2015). Adsorption characterization of Pb(ii) ions onto iodate doped chitosan composite: equilibrium and kinetic studies. RSC Advances, 5(67), 54188-54201. https://doi.org/10.1039/C5RA09899H DOI: https://doi.org/10.1039/C5RA09899H

Geng, X., Kwon, O. H., & Jang, J. (2005). Electrospinning of chitosan dissolved in concentrated acetic acid solution. Biomaterials, 26(27), 5427-5432. https://doi.org/10.1016/j.biomaterials.2005.01.066 DOI: https://doi.org/10.1016/j.biomaterials.2005.01.066

Guerrero-Gutiérrez, E. M. A., Pérez-Pérez, M., Newbloom, G. M., Pozzo, L. D., & Suleiman, D. (2017). Effect of block composition on the morphology and transport properties of sulfonated fluoroblock copolymer blend membranes. Polymer Engineering & Science, 57(11),

https://doi.org/10.1002/pen.24508 DOI: https://doi.org/10.1002/pen.24508

Guerrero-Gutiérrez, E. M. A., Pérez-Pérez, M., & Suleiman, D. (2015). Synthesis and characterization of sulfonated fluorinated block copolymer membranes with different esterified initiators for DMFC applications. Journal of Applied Polymer Science, 132(23), Artículo 42046. https://doi.org/10.1002/app.42046 DOI: https://doi.org/10.1002/app.42046

Guerrero-Gutiérrez, E. M. A., & Suleiman, D. (2013). Supercritical fluid CO2 processing and counter ion substitution of nafion® membranes. Journal of Applied Polymer Science, 129(1), 73-85. https://doi.org/10.1002/app.38689 DOI: https://doi.org/10.1002/app.38689

Gutiérrez, M. C., De Paoli, M-A., & Felisberti, M. I. (2014). Cellulose acetate and short curauá fibers biocomposites prepared by large scale processing: Reinforcing and thermal insulating properties. Industrial Crops and Products, 52, 363-372. https://doi.org/10.1016/j.indcrop.2013.10.054 DOI: https://doi.org/10.1016/j.indcrop.2013.10.054

Hong, S. H., Cho, Y., & Kang, S. W. (2020). Highly porous and thermally stable cellulose acetate to utilize hydrated glycerin. Journal of Industrial and Engineering Chemistry, 91, 79-84. https://doi.org/10.1016/j.jiec.2020.07.019 DOI: https://doi.org/10.1016/j.jiec.2020.07.019

Huq, T., Khan, A., Brown, D., Dhayagude, N., He, Z., & Ni, Y. (2022). Sources, production and commercial applications of fungal chitosan: A review. Journal of Bioresources and Bioproducts, 7(2), 85-98. https://doi.org/10.1016/j.jobab.2022.01.002 DOI: https://doi.org/10.1016/j.jobab.2022.01.002

Islam, S., Bhuiyan, M. A. R., & Islam, M. N. (2017). Chitin and chitosan: Structure, properties and applications in biomedical engineering. Journal of Polymers and the Environment, 25(3), 854-866. https://doi.org/10.1007/s10924-016-0865-5 DOI: https://doi.org/10.1007/s10924-016-0865-5

Jarquin, C., Morales, O., McCracken, J. P., Lopez, M. R., Lopez, B., Reyes, L., Gómez, G. A., Bryan, J. P., Peruski, L. F., Parsons, M. B., & Pattabiraman, V. (2022). Burden of Diarrhoeagenic Escherichia coli in Santa Rosa, Guatemala in active health-services surveillance during 2008-2009 and 2014-2015. Tropical Medicine & International Health, 27(4), 408-417. https://doi.org/10.1111/tmi.13735 DOI: https://doi.org/10.1111/tmi.13735

Keshvardoostchokami, M., Majidi, M., Zamani, A., & Liu, B. (2021). A review on the use of chitosan and chitosan derivatives as the bio-adsorbents for the water treatment: Removal of nitrogen-containing pollutants. Carbohydrate Polymers, 273, Artículo 118625. https://doi.org/10.1016/j.carbpol.2021.118625 DOI: https://doi.org/10.1016/j.carbpol.2021.118625

Lebedeva, N. S., Yurina, E. S., Guseinov, S. S., Gubarev, Y. A., & V'yugin, A. I. (2021). Destruction of chitosan and its complexes with cobalt(II) and copper(II) Tetrasulphophthalocyanines. Polymers, 13, Artículo 2781. https://doi.org/10.3390/polym13162781 DOI: https://doi.org/10.3390/polym13162781

Li, S., Wang, X., Guo, Y., Hu, J., Lin, S., Tu, Y., Chen, L., Ni, Y., & Huang, L. (2022). Recent advances on cellulose-based nanofiltration membranes and their applications in drinking water purification: A review. Journal of Cleaner Production, 333, Artículo 130171. https://doi.org/10.1016/j.jclepro.2021.130171 DOI: https://doi.org/10.1016/j.jclepro.2021.130171

Lin, C.-P., Chang, Y.-M., Gupta, J. P., & Shu, C.-M. (2010). Comparisons of TGA and DSC approaches to evaluate nitrocellulose thermal degradation energy and stabilizer efficiencies. Process Safety and Environmental Protection, 88(6), 413-419. https://doi.org/10.1016/j.psep.2010.07.004 DOI: https://doi.org/10.1016/j.psep.2010.07.004

Madaeni, S. S., Ghaemi, N., & Rajabi, H. (2015). Advances in polymeric membranes for water treatment. En A. Basile, A. Cassano & N. K. Rastogi (Eds.), Advances in Membrane Technologies for Water Treatment (pp. 3-41). https://doi.org/10.1016/B978-1-78242-121-4.00001-0 DOI: https://doi.org/10.1016/B978-1-78242-121-4.00001-0

Mänttäri, M., Pihlajamäki, A., Kaipainen, E., & Nyström, M. (2002). Effect of temperature and membrane pre-treatment by pressure on the filtration properties of nanofiltration membranes. Desalination, 145(1), 81-86. https://doi.org/10.1016/S0011-9164(02)00390-9 DOI: https://doi.org/10.1016/S0011-9164(02)00390-9

Maturin, L., & Peeler, J. T. (2020). BAM Chapter 3: Aerobic Plate Count | FDA. https://www.fda.gov/food/laboratory-methods-food/bam-chapter-3-aerobic-plate-count

Ministerio de Salud Pública y Asistencia Social de Guatemala, Departamento de Epidemiología. (2022). Semana Epidemiológica 12, 2022.

Mukherjee, M., & De, S. (2018). Antibacterial polymeric membranes: a short review. Environmental Science: Water Research & Technology, 4(8), 1078-1104. https://doi.org/10.1039/C8EW00206A DOI: https://doi.org/10.1039/C8EW00206A

Nakayama, R., Katsumata, K., Niwa, Y., & Namibio, N. (2020). Dependence of water-permeable chitosan membranes on chitosan molecular weight and alkali treatment. In Membranes (Vol. 10, Issue 11). https://doi.org/10.3390/membranes10110351 DOI: https://doi.org/10.3390/membranes10110351

Oh, S. Y., Yoo, D. Il, Shin, Y., & Seo, G. (2005). FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide. Carbohydrate Research, 340(3), 417-428. https://doi.org/10.1016/j.carres.2004.11.027 DOI: https://doi.org/10.1016/j.carres.2004.11.027

Otekpo, L. A. (2020). Demonstration of total coliforms and Escherichia coli in drinking water in the borough of the Plateau, city of Savè in Benin. World Water Policy, 6(1), 38-51. https://doi.org/10.1002/wwp2.12020 DOI: https://doi.org/10.1002/wwp2.12020

Pérez-Pérez, M., & Suleiman, D. (2015). Transport properties of sulfonated poly(ether ether ketone) membranes with counter-ion substitution. Journal of Membrane Science, 493, 414-427. https://doi.org/10.1016/j.memsci.2015.06.017 DOI: https://doi.org/10.1016/j.memsci.2015.06.017

Praveena, S. M., Han, L. S., Than, L. T. L., & Aris, A. Z. (2016). Preparation and characterisation of silver nanoparticle coated on cellulose paper: evaluation of their potential as antibacterial water filter. Journal of Experimental Nanoscience, 11(17), 1307-1319. https://doi.org/10.1080/17458080.2016.1209790 DOI: https://doi.org/10.1080/17458080.2016.1209790

Qi, L., Liu, Z., Wang, N., & Hu, Y. (2018). Facile and efficient in situ synthesis of silver nanoparticles on diverse filtration membrane surfaces for antimicrobial performance. Applied Surface Science, 456, 95-103. https://doi.org/10.1016/j.apsusc.2018.06.066 DOI: https://doi.org/10.1016/j.apsusc.2018.06.066

Quaranta, D., Krans, T., Santo, C. E., Elowsky, C. G., Domaille, D. W., Chang, C. J., & Grass, G. (2011). Mechanisms of contact-mediated killing of yeast cells on dry metallic copper surfaces. Applied and Environmental Microbiology, 77(2), 416-426. https://doi.org/10.1128/AEM.01704-10 DOI: https://doi.org/10.1128/AEM.01704-10

Rabea, E. I., Badawy, M. E.-T., Stevens, C. V., Smagghe, G., & Steurbaut, W. (2003). Chitosan as antimicrobial agent: Applications and mode of action. Biomacromolecules, 4(6), 1457-1465. https://doi.org/10.1021/bm034130m DOI: https://doi.org/10.1021/bm034130m

Ricci, B. C., Ferreira, C. D., Marques, L. S., Martins, S. S., Reis, B. G., & Amaral, M. C. S. (2017). Assessment of the chemical stability of nanofiltration and reverse osmosis membranes employed in treatment of acid gold mining effluent. Separation and Purification Technology, 174, 301-311. https://doi.org/10.1016/j.seppur.2016.11.007 DOI: https://doi.org/10.1016/j.seppur.2016.11.007

Salles, M. J. C., Zurita, J., Mejía, C., Villegas, M. V., Alvarez, C., Bavestrello, L., Zurita, J. (2013). Resistant gram-negative infections in the outpatient setting in Latin America. Epidemiology and Infection, 141(12), 2459-2472. https://doi.org/10.1017/S095026881300191X DOI: https://doi.org/10.1017/S095026881300191X

Schindler, A., Doedt, M., Gezgin, Ş., Menzel, J., & Schmölzer, S. (2017). Identification of polymers by means of DSC, TG, STA and computer-assisted database search. Journal of Thermal Analysis and Calorimetry, 129(2), 833-842. https://doi.org/10.1007/s10973-017-6208-5 DOI: https://doi.org/10.1007/s10973-017-6208-5

Schneider, S. (2005). Enfermedades Transmitidas por Alimentos en Guatemala. http://www.fao.org/3/i0480s/i0480s04.pdf

Shen, S. S., Yang, J. J., Liu, C. X., & Bai, R. B. (2017). Immobilization of copper ions on chitosan/cellulose acetate blend hollow fiber membrane for protein adsorption. RSC Advances, 7(17), 10424-10431. https://doi.org/10.1039/C7RA00148G DOI: https://doi.org/10.1039/C7RA00148G

Song, J., Birbach, N. L., & Hinestroza, J. P. (2012). Deposition of silver nanoparticles on cellulosic fibers via stabilization of carboxymethyl groups. Cellulose, 19(2), 411-424. https://doi.org/10.1007/s10570-011-9647-3 DOI: https://doi.org/10.1007/s10570-011-9647-3

Spoială, A., Ilie, C.-I., Ficai, D., Ficai, A., & Andronescu, E. (2021). Chitosan-Based Nanocomposite Polymeric Membranes for Water Purification-A Review. Materials, 14(9). https://doi.org/10.3390/ma14092091 DOI: https://doi.org/10.3390/ma14092091

Standard Methods. (2018). 9222 membrane filter technique for members of the coliform group. In Standard methods for the examination of water and wastewater. American Public Health Association. https://doi.org/doi:10.2105/SMWW.2882.193

Suleiman, D., Padovani, A. M., Negrón, A. A., Sloan, J. M., Napadensky, E., & Crawford, D. M. (2014). Mechanical and chemical properties of poly(styrene-isobutylene-styrene) block copolymers: Effect of sulfonation and counter ion substitution. Journal of Applied Polymer Science, 131(11). https://doi.org/10.1002/app.40344 DOI: https://doi.org/10.1002/app.40344

Syed, R., Sen, D., Mani Krishna, K. V., & Ghosh, S. K. (2018). Fabrication of highly ordered nanoporous alumina membranes: Probing microstructures by SAXS, FESEM and AFM. Microporous and Mesoporous Materials, 264, 13-21. https://doi.org/10.1016/j.micromeso.2017.12.034 DOI: https://doi.org/10.1016/j.micromeso.2017.12.034

Szekeres, G. P., Nemeth, Z., Schrantz, K., Nemeth, K., Schabikowski, M., Traber, J., Graule, T. (2018). Copper-Coated cellulose-based water filters for virus retention. ACS Omega, 3(1), 446-454. https://doi.org/10.1021/acsomega.7b01496 DOI: https://doi.org/10.1021/acsomega.7b01496

Prado, J. V., Vidal, A. R., & Durán, T. C. (2012). Aplicación de la capacidad bactericida del cobre en la práctica médica. Revista Médica de Chile, 140(10), 1325-1332. http://dx.doi.org/10.4067/S0034-98872012001000014 DOI: https://doi.org/10.4067/S0034-98872012001000014

Wang, R., Guan, S., Sato, A., Wang, X., Wang, Z., Yang, R., Hsiao, B. S., & Chu, B. (2013). Nanofibrous microfiltration membranes capable of removing bacteria, viruses and heavy metal ions. Journal of Membrane Science, 446, 376-382. https://doi.org/10.1016/j.memsci.2013.06.020 DOI: https://doi.org/10.1016/j.memsci.2013.06.020

Zhuang, L., Zhi, X., Du, B., & Yuan, S. (2020). Preparation of Elastic and Antibacterial Chitosan-Citric Membranes with High Oxygen Barrier Ability by in Situ Cross-Linking. ACS Omega, 5(2), 1086-1097. https://doi.org/10.1021/acsomega.9b03206 DOI: https://doi.org/10.1021/acsomega.9b03206

Resultados de investigacion

Descargas

Publicado

2022-06-13

Cómo citar

Guerrero-Gutiérrez, E. M. A., Abad, M., Gaitán, I., & Guerrero, K. (2022). Efecto de las membranas con Cu+2 sobre el proceso de filtración y capacidad de biocida contra Escherichia coli. Ciencia, Tecnologí­a Y Salud, 9(1), 98–115. https://doi.org/10.36829/63CTS.v9i1.1041

Número

Sección

Artículos científicos