Actividad fotocatalítica, absorción de agua y estabilidad térmica de morteros a base de cemento blanco con silicona de polisiloxano y diferentes dosis de nanopartículas de dióxido de titanio

Autores/as

  • Jennyfer Paiz-Rosales Escuela de Ingeniería Química, Facultad de Ingeniería, Universidad de San Carlos de Guatemala
  • Edward M. A. Guerrero-Gutiérrez Escuela de Ingeniería Química, Facultad de Ingeniería, Universidad de San Carlos de Guatemala https://orcid.org/0000-0002-5778-3953
  • Susana Arrechea Escuela de Ingeniería Química, Facultad de Ingeniería, Universidad de San Carlos de Guatemala
  • Luis Velasquez Centro de Investigación y Desarrollo CETEC, Cementos Progreso https://orcid.org/0000-0002-8299-7865
  • Roberto Diaz Centro de Investigación y Desarrollo CETEC, Cementos Progreso
  • Shirley Torres Centro de Investigación y Desarrollo CETEC
  • Carmela Barrios Centro de Investigación y Desarrollo CETEC
  • Elvis Garcia Centro de Investigación y Desarrollo CETEC, Cementos Progreso

DOI:

https://doi.org/10.36829/63CTS.v9i1.1011

Palabras clave:

Morteros, Cemento, Auto-limpieza, Nano-TiO2, Hidrofóbico

Resumen

Los morteros a base de cemento blanco generalmente se decoloran y alteran sus propiedades estéticas debido a los contaminantes del aire en las áreas urbanas. Nanopartículas añadidas a estos morteros pueden proporcionar propiedades fotocatalíticas que descomponen estos contaminantes. Asimismo, otros agentes hidrofóbicos se han estudiado individualmente para mejorar las construcciones a la intemperie. Por lo tanto, se presenta el efecto fotocatalítico e hidrofóbico al incorporar nano-TiO2 y silicona hidrofóbica de polisiloxano (DOWSILTM) en una matriz de cemento blanco. El nano-TiO2 se caracterizó por medio de Difracción de Rayos X (DRX); luego, el mortero se mezcló con adiciones de nano-TiO2 (0.0, 0.5, 1.0, 3.0%) y DOWSILTM (0.0, 0.5%). Los morteros se sometieron a irradiación UV, para degradar el colorante orgánico rodamina B, monitoreando su variación de color usando un espectrofotómetro CIEL*a*b*. La eficiencia fotocatalítica del mortero se evaluó utilizando una modificación de la norma italiana Ente Nazionale Italiano di Unificazione 11259:2016 basada en la degradación de la rodamina B (RhB) en el mortero expuesto a la radiación UV. Además, se evaluó la permeabilidad al agua y el ángulo de contacto. Esta investigación demostró que el mortero de cemento con nano-TiO2/DOWSILTM posee actividad fotocatalítica. Las muestras con 1.0%/0.5% y 3.0%/0.5% nano-TiO2/DOWSILTM mostraron una mayor eficiencia de degradación de RhB para R4 y R26. Por lo tanto, estos materiales tienen potencial para mejorar la calidad de los morteros en construcciones urbanas.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Al-Kheetan, M. J., Rahman, M. M., & Chamberlain, D. A. (2019). Moisture evaluation of concrete pavement treated with hydrophobic surface impregnants. International Journal of Pavement Engineering, 21(14), 1746-1754. https://doi.org/10.1080/10298436.2019.1567917

Bernat-Masoa, E., Puigvertb, F., Abdelmoulac, H., & Gild, L. (2018). Additioning alfa fibres in cement mortar. Revista de la Construcción, 17(3), 72-84. http://dx.doi.org/10.7764/rdlc.17.1.72

Chen, J., & Poon, C. S. (2009). Photocatalytic construction and building materials: From fundamentals to applications. Building and Environment, 44(9), 1899-1906. https://doi.org/10.1016/j.buildenv.2009.01.002

Chieng, B. W., Ibrahim, N. A., Daud, N. A., & Talib, Z. A. (2018). Functionalization of graphene oxide via gamma-ray irradiation for hydrophobic materials. In Synthesis, Technology, and Applications of Carbon Nanomaterials (Chapter 8, pp. 177-203). Elsevier. https://doi.org/10.1016/B978-0-12-815757-2.00008-5

Christodoulou, C., Goodier, C. I., Austin, S. A., Webb, J., & Glass, G. K. (2013). Long-term performance of surface impregnation of reinforced concrete structures with silane. Construction and Building Materials, 48, 708-716. https://doi.org/10.1016/j.conbuildmat.2013.07.038

Cohen, J. D., Sierra-Gallego, G., & Tobón, J. I. (2015). Evaluation of photocatalytic properties of Portland cement blended with titanium oxynitride (TiO2 - xNy) nanoparticles. Coatings, 5(3), 465-476. https://doi.org/10.3390/coatings5030465

Dantas, S. R. A., Vittorino, F., & Loh, K. (2019). Photocatalytic performance of white cement mortars exposed in urban atmosphere. Global Journal of Research in Engineering, 19(2-C). http://doi.org/10.34257/gjrecvol19is2pg1

Diamanti, M. V., Brenna, A., Bolzoni, F. A. B. I. O., Berra, M., Pastore, T., & Ormellese, M. (2013). Effect of polymer modified cementitious coatings on water and chloride permeability in concrete. Construction and Building Materials, 49, 720-728. https://doi.org/10.1016/j.conbuildmat.2013.08.050

Diamanti, M. V., Luongo, N., Massari, S., Lupica Spagnolo, S., Daniotti, B., & Pedeferri, M. P. (2021). Durability of self-cleaning cement-based materials. Construction and Building Materials, 280, Article 122442. https://doi.org/10.1016/j.conbuildmat.2021.122442

Duarte, R., Flores-Colen, I., de Brito, J., & Hawreen, A. (2020). Variability of in-situ testing in wall coating systems-Karsten tube and moisture meter techniques. Journal of Building Engineering, 27, Article 100998. https://doi.org/10.1016/j.jobe.2019.100998

Ente Nazionale Italiano di Unificazione. (2016). Fotocatalisi - Determinazione dell'attività fotocatalitica di leganti idraulici - Metodo della rodammina. (UNI 11259:2016).

Esteves, C., Ahmed, H., Flores-Colen, I., & Veiga, R. (2019). The influence of hydrophobic protection on building exterior claddings. Journal of Coatings Technology and Research, 16(5), 1379-1388. https://doi.org/10.1007/s11998-019-00220-7

Etxeberria, M., Guo, M. Z., Maury-Ramirez, A., & Poon, C. S. (2017). Influence of dust and oil accumulation on effectiveness of photocatalytic concrete surfaces. Journal of Environmental Engineering, 143(9), Article 04017040. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001239

Falchi, L., Zendri, E., Müller, U., & Fontana, P. (2015). The influence of water-repellent admixtures on the behavior and the effectiveness of Portland limestone cement mortars. Cement and Concrete Composites, 59, 107-118. https://doi.org/10.1016/j.cemconcomp.2015.02.004

Fornasini, L., Bergamonti, L., Bondioli, F., Bersani, D., Lazzarini, L., Paz, Y., & Lottici, P. P. (2019). Photocatalytic N-doped TiO2 for self-cleaning of limestones. The European Physical Journal Plus, 134(10), Article 539. https://doi.org/10.1140/epjp/i2019-12981-6

Fujishima, F., Hashimoto, K., & Watanabe, T. (1999). TiO2 photocatalysis fundamentals and applications. A Revolution in cleaning technology. Bkc.

Gherardi, F., Goidanich, S., & Toniolo, L. (2018). Improvements in marble protection by means of innovative photocatalytic nanocomposites. Progress in Organic Coatings, 121, 13-22. https://doi.org/10.1016/j.porgcoat.2018.04.010

Han, B., Sun, S., Ding, S., Zhang, L., Yu, X., & Ou, J. (2015). Review of nanocarbon-engineered multifunctional cementitious composites. Composites Part A: Applied Science and Manufacturing, 70, 69-81. https://doi.org/10.1016/j.compositesa.2014.12.002

Han, B., Zhang, L., & Ou, J. (2017). Photocatalytic Concrete. In Smart and multifunctional concrete toward sustainable infrastructures (pp. 299-310). Springer. https://www.springer.com/gp/book/9789811043482

Joni, I. M., Nulhakim, L., & Panatarani, C. (2018). Characteristics of TiO2 particles prepared by simple solution method using TiCl3 precursor. Journal of Physics: Conference Series, 1080, Article 12042. https://doi.org/10.1088/1742-6596/1080/1/012042

Kapridaki, C., & Maravelaki-Kalaitzaki, P. (2013). TiO2-SiO2-PDMS nano-composite hydrophobic coating with self-cleaning properties for marble protection. Progress in Organic Coatings, 76(2-3), 400-410. https://doi.org/10.1016/j.porgcoat.2012.10.006

Kaszynska, M., & Olczyk, N. (2018). The influence of TiO2 nanoparticles on the properties of self-cleaning cement mortar. 18th International Multidisciplinary Scientific GeoConference: SGEM: Surveying Geology & mining Ecology Management, 413-420.

https://doi.org/10.5593/sgem2018/6.3/S26.054

Limeir, J., Agulló, L., & Etxeberria, M. (2012). Dredged marine sand as construction material. European Journal of Environmental and Civil Engineering, 16(8), 906-918. https://doi.org/10.1080/19648189.2012.676376

Luo, Y.-B., Wang, X.-L., & Wang, Y.-Z. (2012). Effect of TiO2 nanoparticles on the long-term hydrolytic degradation behavior of PLA. Polymer Degradation and Stability, 97(5), 721-728. https://doi.org/10.1016/j.polymdegradstab.2012.02.011

Ma, M., & Hill, R. M. (2006). Superhydrophobic surfaces. Current Opinion in Colloid & Interface Science, 11(4), 193-202. https://doi.org/10.1016/j.cocis.2006.06.002

Meng, T., Yu, Y., Qian, X., Zhan, S., & Qian, K. (2012). Effect of nano-TiO2 on the mechanical properties of cement mortar. Construction and Building Materials, 29, 241-245. https://doi.org/10.1016/j.conbuildmat.2011.10.047

National Nanotechnology Coordination Office. (2018). Nanotechnology: Big Things from a Tiny World provides.https://www.nano.gov/sites/default/files/pub_resource/Nanotechnology_Big_Things_Brochure_web_0.pdf

Nochaiya, T., & Chaipanich, A. (2010). The effect of nano-TiO2 addition on Portland cement properties. 3rd International Nanoelectronics Conference (INEC), 1479-1480. https://doi.org/10.1109/INEC.2010.5424777

Paolini, R., Borroni, D., Pedeferri, M., & Diamanti, M. V. (2018). Self-cleaning building materials: The multifaceted effects of titanium dioxide. Construction and Building Materials, 182, 126-133. https://doi.org/10.1016/j.conbuildmat.2018.06.047

RILEM. (1980). Water absorption under low pressure, Pipe method Test Nº II.4, Recommandations provisoires. RILEM TC 25-PEM (pp. 201-202).

Rosales, A., Maury-Ramírez, A., Mejía-De Gutiérrez, R., Guzmán, C., & Esquivel, K. (2018). SiO2@ TiO2 coating: synthesis, physical characterization and photocatalytic evaluation. Coatings, 8(4), Article 120. https://doi.org/10.3390/coatings8040120

Ruot, B., Plassais, A., Olive, F., Guillot, L., & Bonafous, L. (2009). TiO2-containing cement pastes and mortars: Measurements of the photocatalytic efficiency using a rhodamine B-based colorimetric test. Solar Energy, 83(10), 1794-1801. https://doi.org/10.1016/j.solener.2009.05.017

Saini, A., Arora, I., & Ratan, J. K. (2020). Photo-induced hydrophilicity of microsized-TiO2 based self-cleaning cement. Materials Letters, 260, Article 126888. https://doi.org/10.1016/j.matlet.2019.126888

Sangchay, W. (2016). The self-cleaning and photocatalytic properties of TiO2 doped with SnO2 thin film preparation by sol-gel method. Energy Procedia, 89, 170-176. https://doi.org/10.1016/j.egypro.2016.05.023

Schneider, J., Matsuoka, M., Takeuchi, M., Zhang, J., Horiuchi, Y., Anpo, M., & Bahnemann, D. W. (2014). Understanding TiO2 photocatalysis: Mechanisms and materials. Chemical Reviews, 114(19), 9919-9986. https://doi.org/10.1021/cr5001892

Sosnin, I. M., Vlassov, S., & Dorogin, L. M. (2021). Application of polydimethylsiloxane in photocatalyst composite materials: A review. Reactive and Functional Polymers, 158, Article 104781. https://doi.org/10.1016/j.reactfunctpolym.2020.104781

Stanaszek-Tomal, E. (2019). The influence of metabolic sulphuric acid solution on cement mortars (CEM II) modified with nano-TiO2. IOP Conference Series: Materials Science and Engineering, 471(4). https://doi:10.1088/1757-899X/471/4/042007

Stanton, M. M., Ducker, R. E., MacDonald, J. C., Lambert, C. R., & McGimpsey, W. G. (2012). Super-hydrophobic, highly adhesive, polydimethylsiloxane (PDMS) surfaces. Journal of colloid and interface science, 367(1), 502-508. https://doi.org/10.1016/j.jcis.2011.07.053

Swart, M., & Mallon, P. E. (2009). Hydrophobicity recovery of corona-modified superhydrophobic surfaces produced by the electrospinning of poly (methyl methacrylate)-graft-poly (dimethylsiloxane) hybrid copolymers. Pure and Applied Chemistry, 81(3), 495-511. https://doi.org/10.1351/PAC-CON-08-08-15

Theivasanthi, T., & Alagar, M. (2013). Titanium dioxide (TiO2) nanoparticles XRD analyses: An insight. arXivLabs. https://doi.org/10.48550/arXiv.1307.1091

UNE Normalización Española. (2000). Métodos de ensayo de cementos. Determinación de la resistencia mecánica, a una edad determinada de una muestra de cemento (UNE-EN 196-1). Asociación Española de Normalización.

UNE Normalización Española. (2018). Especificaciones de los morteros para albañilería. Parte 1: Morteros para revoco y enlucido (UNE-EN, 998-1). Asociación Española de Normalización.

Vasco Correa, C. A. (2007). Nanotecnología: Revolución tecnológica en progreso. Contribuciones a la Economía. http://www.eumed.net/ce/2007b/cavc.htm

Wang, D., Hou, P., Zhang, L., Yang, P., & Cheng, X. (2017). Photocatalytic and hydrophobic activity of cement-based materials from benzyl-terminated-TiO2 spheres with core-shell structures. Construction and Building Materials, 148, 176-183. https://doi.org/10.1016/j.conbuildmat.2017.05.038

Wooh, S., Encinas, N., Vollmer, D., & Butt, H.-J. (2017). Stable Hydrophobic Metal-Oxide Photocatalysts via Grafting Polydimethylsiloxane Brush. Advanced Materials, 29(16), 1604637. https://doi.org/10.1002/adma.201604637

Zhang, R., Cheng, X., Hou, P., & Ye, Z. (2015). Influences of nano-TiO2 on the properties of cement-based materials: Hydration and drying shrinkage. Construction and Building Materials, 81, 35-41. https://doi.org/10.1016/j.conbuildmat.2015.02.003

Resultados de investigacion

Descargas

Publicado

2022-06-13

Cómo citar

Paiz-Rosales, J., Guerrero-Gutiérrez, E. M. A., Arrechea, S., Velasquez, L., Diaz, R., Torres, S., Barrios, C., & Garcia, E. (2022). Actividad fotocatalítica, absorción de agua y estabilidad térmica de morteros a base de cemento blanco con silicona de polisiloxano y diferentes dosis de nanopartículas de dióxido de titanio. Ciencia, Tecnologí­a Y Salud, 9(1), 82–97. https://doi.org/10.36829/63CTS.v9i1.1011

Número

Sección

Artículos científicos