Efecto de las membranas con Cu+2 sobre el proceso de filtración y capacidad de biocida contra Escherichia coli
DOI:
https://doi.org/10.36829/63CTS.v9i1.1041Palabras clave:
Unidades Formadoras de Colonias, fenómeno de transporte, degradación térmica, morfologíaResumen
Esta investigación estudió la preparación de membranas compuestas de celulosa y quitosano entrecruzadas con Cu(II) para determinar su efecto biocida y eficiencia en la remoción de Escherichia coli. Las membranas de quitosano se obtuvieron por medio de la técnica de evaporación del solvente. Propiedades de absorción de agua, degradación térmica y mecánicas de las membranas fueron evaluadas con el propósito de modificar la estructura química, la superficie y estudiar su impacto como agente biocida. Los resultados muestran que el Cu(II) interactúa con los grupos iónicos de las membranas que inducen un cambio estructural produciendo un aumento de 190 % en el módulo G*. Además, el catión provee estabilidad térmica a temperaturas menores de 200 ºC y produce cambios superficiales a la membrana, especialmente a la membrana de celulosa. Adicionalmente, la membrana de celulosa-Cu(II) aumentó su efecto biocida contra E. coli hasta un 96 %. El proceso de remoción por medio de la filtración aumentó 41 % con la incorporación del catión. Esta investigación muestra el efecto de la interacción del catión con grupos iónicos en la membrana que mejoran las propiedades de filtración y efecto biocida contra esta enterobacteria que puede llegar a ser patógena para el ser humano
Descargas
Citas
Avilés-Barreto, S. L., & Suleiman, D. (2013). Transport properties of sulfonated poly (styrene-isobutylene-styrene) membranes with counter-ion substitution. Journal of Applied Polymer Science, 129(4), 2294-2304. https://doi.org/10.1002/app.38952 DOI: https://doi.org/10.1002/app.38952
Bargeman, G. (2021). Recent developments in the preparation of improved nanofiltration membranes for extreme pH conditions. Separation and Purification Technology, 279, Artículo 119725. https://doi.org/10.1016/j.seppur.2021.119725 DOI: https://doi.org/10.1016/j.seppur.2021.119725
Bassyouni, M., Abdel-Aziz, M. H., Zoromba, M. S., Abdel-Hamid, S. M. S., & Drioli, E. (2019). A review of polymeric nanocomposite membranes for water purification. Journal of Industrial and Engineering Chemistry, 73, 19-46. https://doi.org/10.1016/j.jiec.2019.01.045 DOI: https://doi.org/10.1016/j.jiec.2019.01.045
Borkow, G., & Gabbay, J. (2005). Copper as a biocidal tool. Current Medicinal Chemistry, 12(18), 2163-2175. https://doi.org/10.2174/0929867054637617 DOI: https://doi.org/10.2174/0929867054637617
Cabral, J. P. S. (2010). Water microbiology. Bacterial pathogens and water. International Journal of Environmental Research and Public Health, 7(10), 3657-3703. https://doi.org/10.3390/ijerph7103657 DOI: https://doi.org/10.3390/ijerph7103657
Castro-Muñoz, R., & González-Valdez, J. (2019). New trends in biopolymer-based membranes for pervaporation. Molecules (Basel, Switzerland), 24(19), 3584. https://doi.org/10.3390/molecules24193584 DOI: https://doi.org/10.3390/molecules24193584
Cooper, A., Oldinski, R., Ma, H., Bryers, J. D., & Zhang, M. (2013). Chitosan-based nanofibrous membranes for antibacterial filter applications. Carbohydrate Polymers, 92(1), 254-259. https://doi.org/10.1016/j.carbpol.2012.08.114 DOI: https://doi.org/10.1016/j.carbpol.2012.08.114
Das, B., & Patra, S. (2017). Antimicrobials: Meeting the challenges of antibiotic resistance through nanotechnology. En Nanostructures for Antimicrobial Therapy (pp. 1-22). Elsevier. https://doi.org/10.1016/B978-0-323-46152-8.00001-9 DOI: https://doi.org/10.1016/B978-0-323-46152-8.00001-9
De Freitas, R. R. M., Senna, A. M., & Botaro, V. R. (2017). Influence of degree of substitution on thermal dynamic mechanical and physicochemical properties of cellulose acetate. Industrial Crops and Products, 109, 452-458. https://doi.org/10.1016/j.indcrop.2017.08.062 DOI: https://doi.org/10.1016/j.indcrop.2017.08.062
Emam, H. E., Manian, A. P., Široká, B., & Bechtold, T. (2012). Copper inclusion in cellulose using sodium d-gluconate complexes. Carbohydrate Polymers, 90(3), 1345-1352. https://doi.org/10.1016/j.carbpol.2012.07.003 DOI: https://doi.org/10.1016/j.carbpol.2012.07.003
Fane, A. G., Wang, R., & Hu, M. X. (2015). Synthetic membranes for water purification: Status and future. Angewandte Chemie - International Edition, 54(11), 3368-3386. https://doi.org/10.1002/anie.201409783 DOI: https://doi.org/10.1002/anie.201409783
Fei-Liu, X., Lin Guan, Y., Zhi Yang, D., Li, Z., & De Yao, K. (2001). Antibacterial action of chitosan and carboxymethylated chitosan. Journal of Applied Polymer Science, 79(7), 1324-1335. https://doi.org/10.1002/1097-4628(20010214)79:7<1324::AID-APP210>3.0.CO;2-L DOI: https://doi.org/10.1002/1097-4628(20010214)79:7<1324::AID-APP210>3.0.CO;2-L
Gedam, A. H., & Dongre, R. S. (2015). Adsorption characterization of Pb(ii) ions onto iodate doped chitosan composite: equilibrium and kinetic studies. RSC Advances, 5(67), 54188-54201. https://doi.org/10.1039/C5RA09899H DOI: https://doi.org/10.1039/C5RA09899H
Geng, X., Kwon, O. H., & Jang, J. (2005). Electrospinning of chitosan dissolved in concentrated acetic acid solution. Biomaterials, 26(27), 5427-5432. https://doi.org/10.1016/j.biomaterials.2005.01.066 DOI: https://doi.org/10.1016/j.biomaterials.2005.01.066
Guerrero-Gutiérrez, E. M. A., Pérez-Pérez, M., Newbloom, G. M., Pozzo, L. D., & Suleiman, D. (2017). Effect of block composition on the morphology and transport properties of sulfonated fluoroblock copolymer blend membranes. Polymer Engineering & Science, 57(11),
https://doi.org/10.1002/pen.24508 DOI: https://doi.org/10.1002/pen.24508
Guerrero-Gutiérrez, E. M. A., Pérez-Pérez, M., & Suleiman, D. (2015). Synthesis and characterization of sulfonated fluorinated block copolymer membranes with different esterified initiators for DMFC applications. Journal of Applied Polymer Science, 132(23), Artículo 42046. https://doi.org/10.1002/app.42046 DOI: https://doi.org/10.1002/app.42046
Guerrero-Gutiérrez, E. M. A., & Suleiman, D. (2013). Supercritical fluid CO2 processing and counter ion substitution of nafion® membranes. Journal of Applied Polymer Science, 129(1), 73-85. https://doi.org/10.1002/app.38689 DOI: https://doi.org/10.1002/app.38689
Gutiérrez, M. C., De Paoli, M-A., & Felisberti, M. I. (2014). Cellulose acetate and short curauá fibers biocomposites prepared by large scale processing: Reinforcing and thermal insulating properties. Industrial Crops and Products, 52, 363-372. https://doi.org/10.1016/j.indcrop.2013.10.054 DOI: https://doi.org/10.1016/j.indcrop.2013.10.054
Hong, S. H., Cho, Y., & Kang, S. W. (2020). Highly porous and thermally stable cellulose acetate to utilize hydrated glycerin. Journal of Industrial and Engineering Chemistry, 91, 79-84. https://doi.org/10.1016/j.jiec.2020.07.019 DOI: https://doi.org/10.1016/j.jiec.2020.07.019
Huq, T., Khan, A., Brown, D., Dhayagude, N., He, Z., & Ni, Y. (2022). Sources, production and commercial applications of fungal chitosan: A review. Journal of Bioresources and Bioproducts, 7(2), 85-98. https://doi.org/10.1016/j.jobab.2022.01.002 DOI: https://doi.org/10.1016/j.jobab.2022.01.002
Islam, S., Bhuiyan, M. A. R., & Islam, M. N. (2017). Chitin and chitosan: Structure, properties and applications in biomedical engineering. Journal of Polymers and the Environment, 25(3), 854-866. https://doi.org/10.1007/s10924-016-0865-5 DOI: https://doi.org/10.1007/s10924-016-0865-5
Jarquin, C., Morales, O., McCracken, J. P., Lopez, M. R., Lopez, B., Reyes, L., Gómez, G. A., Bryan, J. P., Peruski, L. F., Parsons, M. B., & Pattabiraman, V. (2022). Burden of Diarrhoeagenic Escherichia coli in Santa Rosa, Guatemala in active health-services surveillance during 2008-2009 and 2014-2015. Tropical Medicine & International Health, 27(4), 408-417. https://doi.org/10.1111/tmi.13735 DOI: https://doi.org/10.1111/tmi.13735
Keshvardoostchokami, M., Majidi, M., Zamani, A., & Liu, B. (2021). A review on the use of chitosan and chitosan derivatives as the bio-adsorbents for the water treatment: Removal of nitrogen-containing pollutants. Carbohydrate Polymers, 273, Artículo 118625. https://doi.org/10.1016/j.carbpol.2021.118625 DOI: https://doi.org/10.1016/j.carbpol.2021.118625
Lebedeva, N. S., Yurina, E. S., Guseinov, S. S., Gubarev, Y. A., & V'yugin, A. I. (2021). Destruction of chitosan and its complexes with cobalt(II) and copper(II) Tetrasulphophthalocyanines. Polymers, 13, Artículo 2781. https://doi.org/10.3390/polym13162781 DOI: https://doi.org/10.3390/polym13162781
Li, S., Wang, X., Guo, Y., Hu, J., Lin, S., Tu, Y., Chen, L., Ni, Y., & Huang, L. (2022). Recent advances on cellulose-based nanofiltration membranes and their applications in drinking water purification: A review. Journal of Cleaner Production, 333, Artículo 130171. https://doi.org/10.1016/j.jclepro.2021.130171 DOI: https://doi.org/10.1016/j.jclepro.2021.130171
Lin, C.-P., Chang, Y.-M., Gupta, J. P., & Shu, C.-M. (2010). Comparisons of TGA and DSC approaches to evaluate nitrocellulose thermal degradation energy and stabilizer efficiencies. Process Safety and Environmental Protection, 88(6), 413-419. https://doi.org/10.1016/j.psep.2010.07.004 DOI: https://doi.org/10.1016/j.psep.2010.07.004
Madaeni, S. S., Ghaemi, N., & Rajabi, H. (2015). Advances in polymeric membranes for water treatment. En A. Basile, A. Cassano & N. K. Rastogi (Eds.), Advances in Membrane Technologies for Water Treatment (pp. 3-41). https://doi.org/10.1016/B978-1-78242-121-4.00001-0 DOI: https://doi.org/10.1016/B978-1-78242-121-4.00001-0
Mänttäri, M., Pihlajamäki, A., Kaipainen, E., & Nyström, M. (2002). Effect of temperature and membrane pre-treatment by pressure on the filtration properties of nanofiltration membranes. Desalination, 145(1), 81-86. https://doi.org/10.1016/S0011-9164(02)00390-9 DOI: https://doi.org/10.1016/S0011-9164(02)00390-9
Maturin, L., & Peeler, J. T. (2020). BAM Chapter 3: Aerobic Plate Count | FDA. https://www.fda.gov/food/laboratory-methods-food/bam-chapter-3-aerobic-plate-count
Ministerio de Salud Pública y Asistencia Social de Guatemala, Departamento de Epidemiología. (2022). Semana Epidemiológica 12, 2022.
Mukherjee, M., & De, S. (2018). Antibacterial polymeric membranes: a short review. Environmental Science: Water Research & Technology, 4(8), 1078-1104. https://doi.org/10.1039/C8EW00206A DOI: https://doi.org/10.1039/C8EW00206A
Nakayama, R., Katsumata, K., Niwa, Y., & Namibio, N. (2020). Dependence of water-permeable chitosan membranes on chitosan molecular weight and alkali treatment. In Membranes (Vol. 10, Issue 11). https://doi.org/10.3390/membranes10110351 DOI: https://doi.org/10.3390/membranes10110351
Oh, S. Y., Yoo, D. Il, Shin, Y., & Seo, G. (2005). FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide. Carbohydrate Research, 340(3), 417-428. https://doi.org/10.1016/j.carres.2004.11.027 DOI: https://doi.org/10.1016/j.carres.2004.11.027
Otekpo, L. A. (2020). Demonstration of total coliforms and Escherichia coli in drinking water in the borough of the Plateau, city of Savè in Benin. World Water Policy, 6(1), 38-51. https://doi.org/10.1002/wwp2.12020 DOI: https://doi.org/10.1002/wwp2.12020
Pérez-Pérez, M., & Suleiman, D. (2015). Transport properties of sulfonated poly(ether ether ketone) membranes with counter-ion substitution. Journal of Membrane Science, 493, 414-427. https://doi.org/10.1016/j.memsci.2015.06.017 DOI: https://doi.org/10.1016/j.memsci.2015.06.017
Praveena, S. M., Han, L. S., Than, L. T. L., & Aris, A. Z. (2016). Preparation and characterisation of silver nanoparticle coated on cellulose paper: evaluation of their potential as antibacterial water filter. Journal of Experimental Nanoscience, 11(17), 1307-1319. https://doi.org/10.1080/17458080.2016.1209790 DOI: https://doi.org/10.1080/17458080.2016.1209790
Qi, L., Liu, Z., Wang, N., & Hu, Y. (2018). Facile and efficient in situ synthesis of silver nanoparticles on diverse filtration membrane surfaces for antimicrobial performance. Applied Surface Science, 456, 95-103. https://doi.org/10.1016/j.apsusc.2018.06.066 DOI: https://doi.org/10.1016/j.apsusc.2018.06.066
Quaranta, D., Krans, T., Santo, C. E., Elowsky, C. G., Domaille, D. W., Chang, C. J., & Grass, G. (2011). Mechanisms of contact-mediated killing of yeast cells on dry metallic copper surfaces. Applied and Environmental Microbiology, 77(2), 416-426. https://doi.org/10.1128/AEM.01704-10 DOI: https://doi.org/10.1128/AEM.01704-10
Rabea, E. I., Badawy, M. E.-T., Stevens, C. V., Smagghe, G., & Steurbaut, W. (2003). Chitosan as antimicrobial agent: Applications and mode of action. Biomacromolecules, 4(6), 1457-1465. https://doi.org/10.1021/bm034130m DOI: https://doi.org/10.1021/bm034130m
Ricci, B. C., Ferreira, C. D., Marques, L. S., Martins, S. S., Reis, B. G., & Amaral, M. C. S. (2017). Assessment of the chemical stability of nanofiltration and reverse osmosis membranes employed in treatment of acid gold mining effluent. Separation and Purification Technology, 174, 301-311. https://doi.org/10.1016/j.seppur.2016.11.007 DOI: https://doi.org/10.1016/j.seppur.2016.11.007
Salles, M. J. C., Zurita, J., Mejía, C., Villegas, M. V., Alvarez, C., Bavestrello, L., Zurita, J. (2013). Resistant gram-negative infections in the outpatient setting in Latin America. Epidemiology and Infection, 141(12), 2459-2472. https://doi.org/10.1017/S095026881300191X DOI: https://doi.org/10.1017/S095026881300191X
Schindler, A., Doedt, M., Gezgin, Ş., Menzel, J., & Schmölzer, S. (2017). Identification of polymers by means of DSC, TG, STA and computer-assisted database search. Journal of Thermal Analysis and Calorimetry, 129(2), 833-842. https://doi.org/10.1007/s10973-017-6208-5 DOI: https://doi.org/10.1007/s10973-017-6208-5
Schneider, S. (2005). Enfermedades Transmitidas por Alimentos en Guatemala. http://www.fao.org/3/i0480s/i0480s04.pdf
Shen, S. S., Yang, J. J., Liu, C. X., & Bai, R. B. (2017). Immobilization of copper ions on chitosan/cellulose acetate blend hollow fiber membrane for protein adsorption. RSC Advances, 7(17), 10424-10431. https://doi.org/10.1039/C7RA00148G DOI: https://doi.org/10.1039/C7RA00148G
Song, J., Birbach, N. L., & Hinestroza, J. P. (2012). Deposition of silver nanoparticles on cellulosic fibers via stabilization of carboxymethyl groups. Cellulose, 19(2), 411-424. https://doi.org/10.1007/s10570-011-9647-3 DOI: https://doi.org/10.1007/s10570-011-9647-3
Spoială, A., Ilie, C.-I., Ficai, D., Ficai, A., & Andronescu, E. (2021). Chitosan-Based Nanocomposite Polymeric Membranes for Water Purification-A Review. Materials, 14(9). https://doi.org/10.3390/ma14092091 DOI: https://doi.org/10.3390/ma14092091
Standard Methods. (2018). 9222 membrane filter technique for members of the coliform group. In Standard methods for the examination of water and wastewater. American Public Health Association. https://doi.org/doi:10.2105/SMWW.2882.193
Suleiman, D., Padovani, A. M., Negrón, A. A., Sloan, J. M., Napadensky, E., & Crawford, D. M. (2014). Mechanical and chemical properties of poly(styrene-isobutylene-styrene) block copolymers: Effect of sulfonation and counter ion substitution. Journal of Applied Polymer Science, 131(11). https://doi.org/10.1002/app.40344 DOI: https://doi.org/10.1002/app.40344
Syed, R., Sen, D., Mani Krishna, K. V., & Ghosh, S. K. (2018). Fabrication of highly ordered nanoporous alumina membranes: Probing microstructures by SAXS, FESEM and AFM. Microporous and Mesoporous Materials, 264, 13-21. https://doi.org/10.1016/j.micromeso.2017.12.034 DOI: https://doi.org/10.1016/j.micromeso.2017.12.034
Szekeres, G. P., Nemeth, Z., Schrantz, K., Nemeth, K., Schabikowski, M., Traber, J., Graule, T. (2018). Copper-Coated cellulose-based water filters for virus retention. ACS Omega, 3(1), 446-454. https://doi.org/10.1021/acsomega.7b01496 DOI: https://doi.org/10.1021/acsomega.7b01496
Prado, J. V., Vidal, A. R., & Durán, T. C. (2012). Aplicación de la capacidad bactericida del cobre en la práctica médica. Revista Médica de Chile, 140(10), 1325-1332. http://dx.doi.org/10.4067/S0034-98872012001000014 DOI: https://doi.org/10.4067/S0034-98872012001000014
Wang, R., Guan, S., Sato, A., Wang, X., Wang, Z., Yang, R., Hsiao, B. S., & Chu, B. (2013). Nanofibrous microfiltration membranes capable of removing bacteria, viruses and heavy metal ions. Journal of Membrane Science, 446, 376-382. https://doi.org/10.1016/j.memsci.2013.06.020 DOI: https://doi.org/10.1016/j.memsci.2013.06.020
Zhuang, L., Zhi, X., Du, B., & Yuan, S. (2020). Preparation of Elastic and Antibacterial Chitosan-Citric Membranes with High Oxygen Barrier Ability by in Situ Cross-Linking. ACS Omega, 5(2), 1086-1097. https://doi.org/10.1021/acsomega.9b03206 DOI: https://doi.org/10.1021/acsomega.9b03206

Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Edward M. A. Guerrero-Gutiérrez, María Abad, Isabel Gaitán, Keila Guerrero

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
El autor que publique en esta revista acepta las siguientes condiciones:
- El autor otorga a la Dirección General de Investigación el derecho de editar, reproducir, publicar y difundir el manuscrito en forma impresa o electrónica en la revista Ciencia, Tecnología y Salud.
- La Direción General de Investigación otorgará a la obra una licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional