Effect of Cu(II) membranes on the filtration process and biocide capacity against Escherichia coli
DOI:
https://doi.org/10.36829/63CTS.v9i1.1041Keywords:
colony-forming units, transport phenomena, thermal degradation, morphologyAbstract
This research studied the membrane preparation of Cu(II) crosslinked membranes composed of cellulose and chitosan to determine its biocidal effect and efficiency to remove Escherichia coli. Water absorption, thermal degradation, and G* modulus evaluated the Cu(II) impact on the equilibrium, thermal and mechanical properties. These results showed that Cu(II) incorporation interacts with the ionic groups, inducing a structural change increasing the G* modulus by 190 %. Moreover, the cation provides thermal stability at temperatures below 200 ºC and produced surface changes to the membrane, especially to the cellulose membrane. Additionally, the cellulose-Cu(II) membranes increased 96 % their biocidal effect against E. coli. Enterobacter filtration process increased 41 % with the cation incorporation into the cellulose membrane. Therefore, this research showed the cation effect on the ionic groups in the membrane that improve the filtration properties and biocidal effect against harmful enterobacteria to humans.
Downloads
References
Avilés-Barreto, S. L., & Suleiman, D. (2013). Transport properties of sulfonated poly (styrene-isobutylene-styrene) membranes with counter-ion substitution. Journal of Applied Polymer Science, 129(4), 2294-2304. https://doi.org/10.1002/app.38952 DOI: https://doi.org/10.1002/app.38952
Bargeman, G. (2021). Recent developments in the preparation of improved nanofiltration membranes for extreme pH conditions. Separation and Purification Technology, 279, Artículo 119725. https://doi.org/10.1016/j.seppur.2021.119725 DOI: https://doi.org/10.1016/j.seppur.2021.119725
Bassyouni, M., Abdel-Aziz, M. H., Zoromba, M. S., Abdel-Hamid, S. M. S., & Drioli, E. (2019). A review of polymeric nanocomposite membranes for water purification. Journal of Industrial and Engineering Chemistry, 73, 19-46. https://doi.org/10.1016/j.jiec.2019.01.045 DOI: https://doi.org/10.1016/j.jiec.2019.01.045
Borkow, G., & Gabbay, J. (2005). Copper as a biocidal tool. Current Medicinal Chemistry, 12(18), 2163-2175. https://doi.org/10.2174/0929867054637617 DOI: https://doi.org/10.2174/0929867054637617
Cabral, J. P. S. (2010). Water microbiology. Bacterial pathogens and water. International Journal of Environmental Research and Public Health, 7(10), 3657-3703. https://doi.org/10.3390/ijerph7103657 DOI: https://doi.org/10.3390/ijerph7103657
Castro-Muñoz, R., & González-Valdez, J. (2019). New trends in biopolymer-based membranes for pervaporation. Molecules (Basel, Switzerland), 24(19), 3584. https://doi.org/10.3390/molecules24193584 DOI: https://doi.org/10.3390/molecules24193584
Cooper, A., Oldinski, R., Ma, H., Bryers, J. D., & Zhang, M. (2013). Chitosan-based nanofibrous membranes for antibacterial filter applications. Carbohydrate Polymers, 92(1), 254-259. https://doi.org/10.1016/j.carbpol.2012.08.114 DOI: https://doi.org/10.1016/j.carbpol.2012.08.114
Das, B., & Patra, S. (2017). Antimicrobials: Meeting the challenges of antibiotic resistance through nanotechnology. En Nanostructures for Antimicrobial Therapy (pp. 1-22). Elsevier. https://doi.org/10.1016/B978-0-323-46152-8.00001-9 DOI: https://doi.org/10.1016/B978-0-323-46152-8.00001-9
De Freitas, R. R. M., Senna, A. M., & Botaro, V. R. (2017). Influence of degree of substitution on thermal dynamic mechanical and physicochemical properties of cellulose acetate. Industrial Crops and Products, 109, 452-458. https://doi.org/10.1016/j.indcrop.2017.08.062 DOI: https://doi.org/10.1016/j.indcrop.2017.08.062
Emam, H. E., Manian, A. P., Široká, B., & Bechtold, T. (2012). Copper inclusion in cellulose using sodium d-gluconate complexes. Carbohydrate Polymers, 90(3), 1345-1352. https://doi.org/10.1016/j.carbpol.2012.07.003 DOI: https://doi.org/10.1016/j.carbpol.2012.07.003
Fane, A. G., Wang, R., & Hu, M. X. (2015). Synthetic membranes for water purification: Status and future. Angewandte Chemie - International Edition, 54(11), 3368-3386. https://doi.org/10.1002/anie.201409783 DOI: https://doi.org/10.1002/anie.201409783
Fei-Liu, X., Lin Guan, Y., Zhi Yang, D., Li, Z., & De Yao, K. (2001). Antibacterial action of chitosan and carboxymethylated chitosan. Journal of Applied Polymer Science, 79(7), 1324-1335. https://doi.org/10.1002/1097-4628(20010214)79:7<1324::AID-APP210>3.0.CO;2-L DOI: https://doi.org/10.1002/1097-4628(20010214)79:7<1324::AID-APP210>3.0.CO;2-L
Gedam, A. H., & Dongre, R. S. (2015). Adsorption characterization of Pb(ii) ions onto iodate doped chitosan composite: equilibrium and kinetic studies. RSC Advances, 5(67), 54188-54201. https://doi.org/10.1039/C5RA09899H DOI: https://doi.org/10.1039/C5RA09899H
Geng, X., Kwon, O. H., & Jang, J. (2005). Electrospinning of chitosan dissolved in concentrated acetic acid solution. Biomaterials, 26(27), 5427-5432. https://doi.org/10.1016/j.biomaterials.2005.01.066 DOI: https://doi.org/10.1016/j.biomaterials.2005.01.066
Guerrero-Gutiérrez, E. M. A., Pérez-Pérez, M., Newbloom, G. M., Pozzo, L. D., & Suleiman, D. (2017). Effect of block composition on the morphology and transport properties of sulfonated fluoroblock copolymer blend membranes. Polymer Engineering & Science, 57(11),
https://doi.org/10.1002/pen.24508 DOI: https://doi.org/10.1002/pen.24508
Guerrero-Gutiérrez, E. M. A., Pérez-Pérez, M., & Suleiman, D. (2015). Synthesis and characterization of sulfonated fluorinated block copolymer membranes with different esterified initiators for DMFC applications. Journal of Applied Polymer Science, 132(23), Artículo 42046. https://doi.org/10.1002/app.42046 DOI: https://doi.org/10.1002/app.42046
Guerrero-Gutiérrez, E. M. A., & Suleiman, D. (2013). Supercritical fluid CO2 processing and counter ion substitution of nafion® membranes. Journal of Applied Polymer Science, 129(1), 73-85. https://doi.org/10.1002/app.38689 DOI: https://doi.org/10.1002/app.38689
Gutiérrez, M. C., De Paoli, M-A., & Felisberti, M. I. (2014). Cellulose acetate and short curauá fibers biocomposites prepared by large scale processing: Reinforcing and thermal insulating properties. Industrial Crops and Products, 52, 363-372. https://doi.org/10.1016/j.indcrop.2013.10.054 DOI: https://doi.org/10.1016/j.indcrop.2013.10.054
Hong, S. H., Cho, Y., & Kang, S. W. (2020). Highly porous and thermally stable cellulose acetate to utilize hydrated glycerin. Journal of Industrial and Engineering Chemistry, 91, 79-84. https://doi.org/10.1016/j.jiec.2020.07.019 DOI: https://doi.org/10.1016/j.jiec.2020.07.019
Huq, T., Khan, A., Brown, D., Dhayagude, N., He, Z., & Ni, Y. (2022). Sources, production and commercial applications of fungal chitosan: A review. Journal of Bioresources and Bioproducts, 7(2), 85-98. https://doi.org/10.1016/j.jobab.2022.01.002 DOI: https://doi.org/10.1016/j.jobab.2022.01.002
Islam, S., Bhuiyan, M. A. R., & Islam, M. N. (2017). Chitin and chitosan: Structure, properties and applications in biomedical engineering. Journal of Polymers and the Environment, 25(3), 854-866. https://doi.org/10.1007/s10924-016-0865-5 DOI: https://doi.org/10.1007/s10924-016-0865-5
Jarquin, C., Morales, O., McCracken, J. P., Lopez, M. R., Lopez, B., Reyes, L., Gómez, G. A., Bryan, J. P., Peruski, L. F., Parsons, M. B., & Pattabiraman, V. (2022). Burden of Diarrhoeagenic Escherichia coli in Santa Rosa, Guatemala in active health-services surveillance during 2008-2009 and 2014-2015. Tropical Medicine & International Health, 27(4), 408-417. https://doi.org/10.1111/tmi.13735 DOI: https://doi.org/10.1111/tmi.13735
Keshvardoostchokami, M., Majidi, M., Zamani, A., & Liu, B. (2021). A review on the use of chitosan and chitosan derivatives as the bio-adsorbents for the water treatment: Removal of nitrogen-containing pollutants. Carbohydrate Polymers, 273, Artículo 118625. https://doi.org/10.1016/j.carbpol.2021.118625 DOI: https://doi.org/10.1016/j.carbpol.2021.118625
Lebedeva, N. S., Yurina, E. S., Guseinov, S. S., Gubarev, Y. A., & V'yugin, A. I. (2021). Destruction of chitosan and its complexes with cobalt(II) and copper(II) Tetrasulphophthalocyanines. Polymers, 13, Artículo 2781. https://doi.org/10.3390/polym13162781 DOI: https://doi.org/10.3390/polym13162781
Li, S., Wang, X., Guo, Y., Hu, J., Lin, S., Tu, Y., Chen, L., Ni, Y., & Huang, L. (2022). Recent advances on cellulose-based nanofiltration membranes and their applications in drinking water purification: A review. Journal of Cleaner Production, 333, Artículo 130171. https://doi.org/10.1016/j.jclepro.2021.130171 DOI: https://doi.org/10.1016/j.jclepro.2021.130171
Lin, C.-P., Chang, Y.-M., Gupta, J. P., & Shu, C.-M. (2010). Comparisons of TGA and DSC approaches to evaluate nitrocellulose thermal degradation energy and stabilizer efficiencies. Process Safety and Environmental Protection, 88(6), 413-419. https://doi.org/10.1016/j.psep.2010.07.004 DOI: https://doi.org/10.1016/j.psep.2010.07.004
Madaeni, S. S., Ghaemi, N., & Rajabi, H. (2015). Advances in polymeric membranes for water treatment. En A. Basile, A. Cassano & N. K. Rastogi (Eds.), Advances in Membrane Technologies for Water Treatment (pp. 3-41). https://doi.org/10.1016/B978-1-78242-121-4.00001-0 DOI: https://doi.org/10.1016/B978-1-78242-121-4.00001-0
Mänttäri, M., Pihlajamäki, A., Kaipainen, E., & Nyström, M. (2002). Effect of temperature and membrane pre-treatment by pressure on the filtration properties of nanofiltration membranes. Desalination, 145(1), 81-86. https://doi.org/10.1016/S0011-9164(02)00390-9 DOI: https://doi.org/10.1016/S0011-9164(02)00390-9
Maturin, L., & Peeler, J. T. (2020). BAM Chapter 3: Aerobic Plate Count | FDA. https://www.fda.gov/food/laboratory-methods-food/bam-chapter-3-aerobic-plate-count
Ministerio de Salud Pública y Asistencia Social de Guatemala, Departamento de Epidemiología. (2022). Semana Epidemiológica 12, 2022.
Mukherjee, M., & De, S. (2018). Antibacterial polymeric membranes: a short review. Environmental Science: Water Research & Technology, 4(8), 1078-1104. https://doi.org/10.1039/C8EW00206A DOI: https://doi.org/10.1039/C8EW00206A
Nakayama, R., Katsumata, K., Niwa, Y., & Namibio, N. (2020). Dependence of water-permeable chitosan membranes on chitosan molecular weight and alkali treatment. In Membranes (Vol. 10, Issue 11). https://doi.org/10.3390/membranes10110351 DOI: https://doi.org/10.3390/membranes10110351
Oh, S. Y., Yoo, D. Il, Shin, Y., & Seo, G. (2005). FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide. Carbohydrate Research, 340(3), 417-428. https://doi.org/10.1016/j.carres.2004.11.027 DOI: https://doi.org/10.1016/j.carres.2004.11.027
Otekpo, L. A. (2020). Demonstration of total coliforms and Escherichia coli in drinking water in the borough of the Plateau, city of Savè in Benin. World Water Policy, 6(1), 38-51. https://doi.org/10.1002/wwp2.12020 DOI: https://doi.org/10.1002/wwp2.12020
Pérez-Pérez, M., & Suleiman, D. (2015). Transport properties of sulfonated poly(ether ether ketone) membranes with counter-ion substitution. Journal of Membrane Science, 493, 414-427. https://doi.org/10.1016/j.memsci.2015.06.017 DOI: https://doi.org/10.1016/j.memsci.2015.06.017
Praveena, S. M., Han, L. S., Than, L. T. L., & Aris, A. Z. (2016). Preparation and characterisation of silver nanoparticle coated on cellulose paper: evaluation of their potential as antibacterial water filter. Journal of Experimental Nanoscience, 11(17), 1307-1319. https://doi.org/10.1080/17458080.2016.1209790 DOI: https://doi.org/10.1080/17458080.2016.1209790
Qi, L., Liu, Z., Wang, N., & Hu, Y. (2018). Facile and efficient in situ synthesis of silver nanoparticles on diverse filtration membrane surfaces for antimicrobial performance. Applied Surface Science, 456, 95-103. https://doi.org/10.1016/j.apsusc.2018.06.066 DOI: https://doi.org/10.1016/j.apsusc.2018.06.066
Quaranta, D., Krans, T., Santo, C. E., Elowsky, C. G., Domaille, D. W., Chang, C. J., & Grass, G. (2011). Mechanisms of contact-mediated killing of yeast cells on dry metallic copper surfaces. Applied and Environmental Microbiology, 77(2), 416-426. https://doi.org/10.1128/AEM.01704-10 DOI: https://doi.org/10.1128/AEM.01704-10
Rabea, E. I., Badawy, M. E.-T., Stevens, C. V., Smagghe, G., & Steurbaut, W. (2003). Chitosan as antimicrobial agent: Applications and mode of action. Biomacromolecules, 4(6), 1457-1465. https://doi.org/10.1021/bm034130m DOI: https://doi.org/10.1021/bm034130m
Ricci, B. C., Ferreira, C. D., Marques, L. S., Martins, S. S., Reis, B. G., & Amaral, M. C. S. (2017). Assessment of the chemical stability of nanofiltration and reverse osmosis membranes employed in treatment of acid gold mining effluent. Separation and Purification Technology, 174, 301-311. https://doi.org/10.1016/j.seppur.2016.11.007 DOI: https://doi.org/10.1016/j.seppur.2016.11.007
Salles, M. J. C., Zurita, J., Mejía, C., Villegas, M. V., Alvarez, C., Bavestrello, L., Zurita, J. (2013). Resistant gram-negative infections in the outpatient setting in Latin America. Epidemiology and Infection, 141(12), 2459-2472. https://doi.org/10.1017/S095026881300191X DOI: https://doi.org/10.1017/S095026881300191X
Schindler, A., Doedt, M., Gezgin, Ş., Menzel, J., & Schmölzer, S. (2017). Identification of polymers by means of DSC, TG, STA and computer-assisted database search. Journal of Thermal Analysis and Calorimetry, 129(2), 833-842. https://doi.org/10.1007/s10973-017-6208-5 DOI: https://doi.org/10.1007/s10973-017-6208-5
Schneider, S. (2005). Enfermedades Transmitidas por Alimentos en Guatemala. http://www.fao.org/3/i0480s/i0480s04.pdf
Shen, S. S., Yang, J. J., Liu, C. X., & Bai, R. B. (2017). Immobilization of copper ions on chitosan/cellulose acetate blend hollow fiber membrane for protein adsorption. RSC Advances, 7(17), 10424-10431. https://doi.org/10.1039/C7RA00148G DOI: https://doi.org/10.1039/C7RA00148G
Song, J., Birbach, N. L., & Hinestroza, J. P. (2012). Deposition of silver nanoparticles on cellulosic fibers via stabilization of carboxymethyl groups. Cellulose, 19(2), 411-424. https://doi.org/10.1007/s10570-011-9647-3 DOI: https://doi.org/10.1007/s10570-011-9647-3
Spoială, A., Ilie, C.-I., Ficai, D., Ficai, A., & Andronescu, E. (2021). Chitosan-Based Nanocomposite Polymeric Membranes for Water Purification-A Review. Materials, 14(9). https://doi.org/10.3390/ma14092091 DOI: https://doi.org/10.3390/ma14092091
Standard Methods. (2018). 9222 membrane filter technique for members of the coliform group. In Standard methods for the examination of water and wastewater. American Public Health Association. https://doi.org/doi:10.2105/SMWW.2882.193
Suleiman, D., Padovani, A. M., Negrón, A. A., Sloan, J. M., Napadensky, E., & Crawford, D. M. (2014). Mechanical and chemical properties of poly(styrene-isobutylene-styrene) block copolymers: Effect of sulfonation and counter ion substitution. Journal of Applied Polymer Science, 131(11). https://doi.org/10.1002/app.40344 DOI: https://doi.org/10.1002/app.40344
Syed, R., Sen, D., Mani Krishna, K. V., & Ghosh, S. K. (2018). Fabrication of highly ordered nanoporous alumina membranes: Probing microstructures by SAXS, FESEM and AFM. Microporous and Mesoporous Materials, 264, 13-21. https://doi.org/10.1016/j.micromeso.2017.12.034 DOI: https://doi.org/10.1016/j.micromeso.2017.12.034
Szekeres, G. P., Nemeth, Z., Schrantz, K., Nemeth, K., Schabikowski, M., Traber, J., Graule, T. (2018). Copper-Coated cellulose-based water filters for virus retention. ACS Omega, 3(1), 446-454. https://doi.org/10.1021/acsomega.7b01496 DOI: https://doi.org/10.1021/acsomega.7b01496
Prado, J. V., Vidal, A. R., & Durán, T. C. (2012). Aplicación de la capacidad bactericida del cobre en la práctica médica. Revista Médica de Chile, 140(10), 1325-1332. http://dx.doi.org/10.4067/S0034-98872012001000014 DOI: https://doi.org/10.4067/S0034-98872012001000014
Wang, R., Guan, S., Sato, A., Wang, X., Wang, Z., Yang, R., Hsiao, B. S., & Chu, B. (2013). Nanofibrous microfiltration membranes capable of removing bacteria, viruses and heavy metal ions. Journal of Membrane Science, 446, 376-382. https://doi.org/10.1016/j.memsci.2013.06.020 DOI: https://doi.org/10.1016/j.memsci.2013.06.020
Zhuang, L., Zhi, X., Du, B., & Yuan, S. (2020). Preparation of Elastic and Antibacterial Chitosan-Citric Membranes with High Oxygen Barrier Ability by in Situ Cross-Linking. ACS Omega, 5(2), 1086-1097. https://doi.org/10.1021/acsomega.9b03206 DOI: https://doi.org/10.1021/acsomega.9b03206
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Edward M. A. Guerrero-Gutiérrez, María Abad, Isabel Gaitán, Keila Guerrero

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
El autor que publique en esta revista acepta las siguientes condiciones:
- El autor otorga a la Dirección General de Investigación el derecho de editar, reproducir, publicar y difundir el manuscrito en forma impresa o electrónica en la revista Ciencia, Tecnología y Salud.
- La Direción General de Investigación otorgará a la obra una licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional
