Inhibition of proteolytic and phospholipase A2 activities of Bothrops asper venom by the ethanolic extract of Neurolaena lobata (L.) Cass
DOI:
https://doi.org/10.36829/63CTS.v8i1.865Abstract
Neurolaena lobata has been used by traditional healers in Central America to treat snakebite, but its ability to neutralize Bothrops asper envenomations needs to be proved. This study evaluated the inhibitory potential of the ethanolic extract of the leaves of N. lobata against proteolytic, phospholipase A2 (PLA2), and coagulant activities of the venom in vitro. Leaves were collected in Izabal, Guatemala, dried, extracted with ethanol, and concentration-response assays were conducted to detect intrinsic proteolytic, PLA2 (evaluated as indirect hemolysis), and coagulant activities. Assays for anti-proteolytic and anti-PLA2 activities were performed after pre-incubation of several amounts of extract with a fixed concentration of venom. Inhibition assay for the coagulant effect of the venom was not tested because pre-incubation of thrombin with the extract prolonged the clotting time of plasma in a concentration-dependent manner. Proteolytic (EC50 = 15.7 μg/μl) and PLA2 (EC50 = 32.5 μg/μl) activities of the venom resulted completely inhibited by the extract. Phytochemical profiles, determined by micrometric assays and semi microanalysis by thin layer chromatography, showed the presence of flavonoids, coumarins, saponins, tannins, sesquiterpene lactones, and essential oils in the extract. SDS-PAGE was used to assess the action of the extract on the venom proteins. Results showed changes in the electrophoretic profile, probably due to the formation of insoluble complexes with plant specialized metabolites. These findings demonstrated that the extract could be able to inhibit toxic effects triggered by zinc-dependent snake venom metalloproteinases (SVMPs) y PLA2s but might aggravate the alterations induced by the venom in coagulation.
Downloads
References
Angulo, Y., & Lomonte, B. (2009). Biochemistry and toxicology of toxins purified from the venom of the snake Bothrops asper. Toxicon, 54, 949-957. doi:10.1016/j.toxicon.2008.12.014
Carvalho, B. M. A., Santos, J. D. L., Xavier, B. M., Almeida, J. R., Resende, L. M., Martins, W., … Marchi-Salvador, D. P. (2013). Snake venom PLA2s inhibitors isolated from Brazilian plants: synthetic and natural molecules. BioMed Research International, 2013, 153045. doi: 10.1155/2013/153045
Castro, O., Gutiérrez, J. M., Barrios, M., Castro, I., Romero M., & Umaña, E. (1999). Neutralización del efecto hemorrágico inducido por veneno de Bothrops asper (Serpentes: Viperidae) por extractos de plantas tropicales. Revista de Biología Tropical. 43, 605-616.
Chippaux, J. P. (2017). Incidence and mortality due to snakebite in the Americas. PLoS Neglected Tropical Diseases, 11(6):e0005662. doi: 10.1371/journal.pntd.0005662.
Cuccioloni, M., Mozzicafreddo, M., Bonfili, L., Cecarini, V., Eleuteri, A. M., & Angeletti, M. (2009). Natural occurring polyphenols as template for drug design. Focus on serine proteases. Chemical Biology & Drug Design, 74, 1-15. doi:10.1111/j.1747-0285.2009.00836.x
da Silva, J. O., Fernandes, R., S., Ticli, F. K., Oliveira, C. Z., Mazzi, M. V., Franco, J. J. … Sampaio, S. V. (2007). Triterpenoid saponins, new metalloprotease snake venom inhibitors isolated from Pentaclethra macroloba. Toxicon, 50, 283-291. doi:10.1016/j.toxicon.2007.03.024
Felix-Silva, J., Silva-Junior, A. A., Zucolotto, S. M., & Fernandes-Pedrosa M. (2017). Medicinal plants for the treatment of local tissue damage induced by snake venoms: an overview from traditional use to pharmacological evidence. Evidence-Based Complementary and Alternative Medicine, doi: 10.1155/2017/5748256
Giovannini, P., & Howes M. R. (2017). Medicinal plants used to treat snakebite in Central America: Review and assessment of scientific evidence. Journal of Ethnopharmacology, 199, 240-256. doi:10.1016/j.jep.2017.02.011
Gracioso, J. S., Paulo, M. Q., Hiruma, Lima C. A., & Souza Brito, A. (1998). Antinociceptive effect in mice of a hydroalcoholic extract of Neurolaena lobata (L.) R. Br. and its organic fractions. Journal of Pharmacy and Pharmacology, 50, 1425-1429. doi:10.1111/j.2042-71581998.tb03370.x
Gracioso, J. S., Hiruma, C. A., & Souza Brito. (2000). Antiulcerogenic effect of a hydroalcoholic extract and its organic fractions of Neurolaena lobata (L.) R. Br. Phytomedicine, 74(4), 283-289. doi:10.1016/S0944-7113(00)80045-8
Gutiérrez, J. M., Ávila, C., Rojas, E., & Cerdas, L. (1988). An alternative in vitro method for testing the potency of the polyvalent antivenom produced in Costa Rica. Toxicon, 26, 411-413. doi:10.1016/0041-0101(88)90010-4
Gutiérrez, J. M. (2014). Current challenges for confronting the public health problem of snakebite envenoming in Central America. Journal of Venomous Animals and Toxins including Tropical Diseases, 20 7. doi:10.1186/1678-9199-20-7
Gutiérrez, J. M., Escalante, T., & Rucavado, A. (2009a). Experimental pathophysiology of systemic alterations induced by Bothrops asper snake venom. Toxicon, 54, 976-987. doi:10.1016/j.toxicon.2009.01.039
Gutiérrez, J. M., Rucavado, A., Chaves, F., Díaz, C., & Escalante, T. (2009b). Experimental pathology of local tissue damage induced by Bothrops asper snake venom. Toxicon, 54, 958-975. doi:10.1016/j.toxicon.2009.01.038
Gutiérrez, J. M., Solano, G., Pla, D., Herrera, M., Segura, A., Vargas, M., … Calvete, J. J. (2017). Preclinical evaluation of the efficacy of antivenoms for snakebite envenomings: state-of-the-art and challenges ahead. Toxins, 9(5). doi:10.3390/toxins9050163
Hay, Y.O. (2002). Estudio etnofarmacológico de plantas utilizadas en la medicina tradicional para el tratamiento de leishmaniasis cutánea, del paludismo y de la mordedura de serpientes, en tres departamentos de Guatemala. Guatemala, USAC-SCD-IRD, 60 p.
Jedinák, A., Maliar, T., Grancai, D., & Nagy, M. (2006). Inhibition activities of natural products on serine proteases. Phytotherapy Research, 20, 214-217. doi:10.1002/ptr.1836
Kuklinski, C. (2000). Farmacognosia. Estudio de las drogas y sustancias medicamentosas de origen natural. Barcelona: Omega.
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680-685. doi:10.1038/227680a0
Lajter, I., Vasas, A., Béni, Z., Forgo, P., Binder, M., Bochkov, V., … Hohmann, J. (2014). Sesquiterpenes from Neurolaena lobata and their antiproliferative and anti-inflammatory activities. Journal of Natural Products, 77, 576-582. doi: 10.1021/np400834c
Lättig, J., Böhl, M., Fischer, P., Tischer, S., & Tietböhl, C., Menschikwski, M.,… Pisabarro, M. T. (2007). Mechanisms of inhibition of human secretory phospholipase A2 by flavonoids: rationale for lead design. Journal of Computer-Aided Molecular Design, 21, 473-483. doi:10.1007/s10822-007-9129-8
Lentz, D., Clark, A. M., Hufford, C. D., Meurer-Grimes, B., Passteiter, C. M., Cordero, J., … Okunade, A. L. (1998). Antimicrobial properties of Honduran medicinal plants. Journal of Ethnopharmacology, 63, 253-263. doi:10.1016/s0378-8741(98)00100-7
Lock, O. (1994). Investigación Fitoquímica. (2ª. ed.). Lima, Perú: Fondo Editorial de la Pontificia Universidad Católica del Perú.
McKinnon, R., Binder, M., Zupkó, I., Afonyushkin, T., Lajter, I., Vasas, A., … Bochkov, V. N. (2014). Pharmacological insight into the anti-inflammatory activity of sesquiterpene lactones from Neurolaena lobata (L.) R. Br. ex Cass. Phytomedicine, 21, 1695-1701. doi: 10.1016/j.phymed.2014.07.019
Ministerio de Sanidad y Consumo, Agencia Española del Medicamento, & Boletín Oficial del Estado (España). (2002). Real Farmacopea Española: Publicada por el Ministerio de Sanidad y Consumo, por mandato de la ley 25/1990, de 20 de diciembre, del Medicamento. (2ª ed.). Madrid.
Moloo, A. (2017). Neglected tropical diseases. World Health Organization. Recuperado de http://www.who.int/neglected_diseases/diseases/en/#
Mors, W. B., do Nascimento, M. C., Ruppelt Pereira, B. M., & Alvares Pereira, N. (2000). Plant natural products active against snake bite – the molecular approach. Phytochemistry, 55, 627-642. doi: 10.1016/s0031-9422(00)00229-6
Mourão de Moura, V., Serra Bezerra, A. N., Veras Mourao, R. H., Varjao Lameiras, J. L., Almeida Raposo, J. D., Luckwu de Sousa, R., … Dos-Santos, M. C. (2014). A comparison of the ability of Bellucia dichotoma Cogn. (Melastomataceae) extract to inhibit the local effects of Bothrops atrox venom when pre-incubated and when used according to traditional methods. Toxicon, 85, 59-68. doi: 10.1016/j.toxicon.2014.04.009
Nayak, B. S., Ramlogan, S., Rao, A. V., & Maharaj, S. (2014). Neurolaena lobata L. promotes wound healing in Sprague Dawley rats. International Journal of Applied and Basic Medical Research, 4, IP: 168.234.75.2 doi: 10.4103/2229-516X.136791.
Otero, R., Fonnegra, R., Jiménez, S. L., Núñez, V., Evans, N., Alzate, S. P., … Vélez, H. N. (2000a). Snakebites and ethnobotany in the northwest region of Colombia Part I: Traditional use of plants. Journal of Ethnopharmacology, 71, 493-504. doi: 10.1016/s0378-8741(00)00243-9
Otero, R., Núñez, V., Barona, J., Fonnegra, R., Jiménez, S. L., Osorio, R. G., … Díaz, A. (2000b). Snakebites and ethnobotany in the northwest region of Colombia. Part III: Neutralization of the haemorrhagic effect of Bothrops atrox venom. Journal of Ethnopharmacology, 73, 233-241. doi: 10.1016/s0378-8741(00)00321-4
Parellada, J., Suárez, G., & Guinea, M. (1998). Inhibition of zinc metallopeptidases by flavonoids and related phenolic compounds: structure-activity relationships. Journal of Enzyme Inhibition, 13, 347-359. doi: 10.3109/14756369809021480
Patiño, A. C., López, J., Aristizábal, M., Quintana, J. C., & Benjumea, D. (2012). Efecto inhibitorio de extractos de Renealmia alpina Rottb. Maas (Zingiberaceae) sobre el veneno de Bothrops asper (mapaná). Biomédica, 32, 365-374.
Patiño, A., C., Benjumea, D. M., & Pereañez, J. A. (2013). Inhibition of venom serine proteinase and metalloproteinase activities by Renealmia alpinia (Zingiberaceae) extracts: Comparison of wild and in vitro propagated plants. Journal of Ethnopharmacology, 149, 590-596. doi: 10.1016/j.jep.
Pereañez, J. A., Patiño, A. C., Núñez, V. & Osorio, E. (2014). The biflavonoid morelloflavone inhibits the enzymatic and biological activities of a snake venom phospholipase A2. Chemico-Biological Interactions, 220, 94-101. doi: 10.1016/j.cbi.2014.06.015.
Pithayanukul, P., Leanpolchareanchai, J., & Saparpakorn, P. (2009). Molecular docking studies and anti-snake venom metalloproteinase activity of Thai mango seed kernel extract. Molecules, 14, 3198-3213. doi: 10.3390/molecules14093198.
Posadas, S., Rodríguez, B., Lobo-Echeverri, T., Ramos, R. S., Hyslop, S., & Núñez, V. (2019). Effects of two fractions of Swietenia macrophylla and catechin on muscle damage induced by Bothrops venom and PLA2. Toxins, 11, 40. doi: 10.3390/toxins11010040.
Preciado, L, M., Comer, J., Núñez, V., Rey-Suárez, P, & Pereañez, J. A. (2018). Inhibition of a snake venom metalloproteinase by the flavonoid myricetin. Molecules, 23, 2662. doi:10.3390/molecules23102662.
Santos, C. B., Bernardino, G. Z., Soares, F. J., Espindola, J. D., Arruda, P. M. R. … Barra, M. T. F. (2014). Preparo e caracterizacao de tinturas das folhas de chá verde [Camellia sinensis (L.) O. Kuntze] Theaceae. Revista Brasileira de Plantas Medicinais, 16, 826-831.
Santhosh, M. S., Hemshekhar, M., Sunitha, K., Thushara, R. M., Jnaneshwari, S., Kemparaju, K., & Girish, K. S. (2013). Snake venom induced local toxicities: plant secondary metabolites as an auxiliary therapy. Mini Reviews in Medical Chemistry, 13, 106-123.
Saravia-Otten, P., Hernández, R., Marroquín, N., García, G., Mérida, M., … Gutiérrez, J. M. (2017). Inhibición de los efectos coagulante, fosfolipasa A2 y proteolítico del veneno de Bothrops asper por plantas usadas tradicionalmente en Centroamérica. Ciencia, Tecnología y Salud, 4, 203-216.
Saravia, P., Cáceres, A., Velásquez, R., & Lara, O. (2001) Plantas con actividad antiofídica en Guatemala. I. Identificación y evaluación de su capacidad neutralizante (Proyecto FODECYT 47-99). Guatemala: Consejo Nacional de Ciencia y Tecnología.
Theakston, R. D. G., & Reid H. A. (1983). Development of a simple standard assay procedures for the characterization of snake venoms. Bulletin of World Health Organization, 61, 949-956.
Wagner, H., & Bladt, S. (1996). Plant Drug Analysis. (2nd ed.). Berlin: B S Publishers.
Wagner, H., & Bladt, S. (2001). A thin layer chromatography atlas. (2nd ed.). Berlin: Springer.
Walshe-Roussel, B., Choueiri, C., Saleem, A., Asim, M., Caal, F., Cal, V., … Arnason, J. T. (2013). Potent anti-inflammatory activity of sesquiterpene lactones from Neurolaena lobate (L.) R. Br. ex Cass., a Q’eqchí’ Maya traditional medicine. Phytochemistry, 92, 122-137. doi: 10.1016/j.phytochem.2013.05.004.
Wang, W., Shih C., & Huang, T. (2004). A novel P-I class metalloproteinase with broad substrate-cleaving activity, agkislysin, from Agkistrodon acutus venom. Biochemical and Biophysical Research Communications, 324, 224-230. doi: 10.1016/j.bbrc.2004.09.031
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Patricia Saravia-Otten, Rosario Hernández, Nereida Marroquín, Gabriela García, Federico Nave, Lorena Rochac, Vicente Genovez, Max Mérida, Sully M. Cruz, Armando Cáceres, Jose M. Gutiérrez
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
El autor que publique en esta revista acepta las siguientes condiciones:
- El autor otorga a la Dirección General de Investigación el derecho de editar, reproducir, publicar y difundir el manuscrito en forma impresa o electrónica en la revista Ciencia, Tecnología y Salud.
- La Direción General de Investigación otorgará a la obra una licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional