Photocatalytic activity of white cement-based mortars with polysiloxane silicone and different doses of titanium dioxide nanoparticles

Authors

  • Jennyfer Paiz-Rosales Escuela de Ingeniería Química, Facultad de Ingeniería, Universidad de San Carlos de Guatemala
  • Edward M. A. Guerrero-Gutiérrez Escuela de Ingeniería Química, Facultad de Ingeniería, Universidad de San Carlos de Guatemala https://orcid.org/0000-0002-5778-3953
  • Susana Arrechea Escuela de Ingeniería Química, Facultad de Ingeniería, Universidad de San Carlos de Guatemala
  • Luis Velásquez Centro de Investigación y Desarrollo CETEC, Cementos Progreso https://orcid.org/0000-0002-8299-7865
  • Roberto Díaz Centro de Investigación y Desarrollo CETEC, Cementos Progreso
  • Shirley Torres Centro de Investigación y Desarrollo CETEC, Cementos Progreso
  • Carmela Barrientos Centro de Investigación y Desarrollo CETEC, Cementos Progreso
  • Elvis García Centro de Investigación y Desarrollo CETEC, Cementos Progreso

DOI:

https://doi.org/10.36829/63CTS.v9i1.1011

Keywords:

Mortars, Cement, Self-Cleaning, Nano-TiO2, Hydrophobic

Abstract

White cement-based mortars in urban areas are usually discolored and altered their esthetic properties due to air pollutants. The addition of nanoparticles in these mortars can provide photocatalytic properties that can decompose pollution agents. Likewise, other hydrophobic agents have been individually studied to improve outdoor building constructions. Therefore, this study presented the photocatalytic and hydrophobic effect of adding nano-TiO2 and silicone hydrophobic powder (DOWSILTM) in a white cement matrix. The nano-TiO2 were characterized by X-Ray Diffraction (XRD); afterwards, the mortar was mixed with additions of nano-TiO2 (0.0, 0.5, 1.0, 3.0%) and DOWSILTM (0.0, 0.5%). The mortar's photocatalytic performance was evaluated using a modification of the standard Italian test Ente Nazionale Italiano di Unificazione 11259:2016 based on Rhodamine B (RhB) degradation on the sample exposed to UV irradiation. Therefore, mortar samples were subjected to UV irradiation to degrade the organic dye rhodamine B, monitoring their color variation using a CIEL*a*b* spectrophotometer. Moreover, the water permeability and the contact angle were evaluated. This research demonstrates that the white cement-based mortar samples added with nano-TiO2/DOWSILTM possess photocatalytic activity. The samples with the addition of 1.0%/0.5% and 3.0%/0.5% nano-TiO2/DOWSILTM showed a higher RhB degradation for R4 and R26. Therefore, these two materials can be employed in these proportions to improve the quality of the white cement-based mortars in urban constructions.

Downloads

Download data is not yet available.

References

Al-Kheetan, M. J., Rahman, M. M., & Chamberlain, D. A. (2019). Moisture evaluation of concrete pavement treated with hydrophobic surface impregnants. International Journal of Pavement Engineering, 21(14), 1746-1754. https://doi.org/10.1080/10298436.2019.1567917

Bernat-Masoa, E., Puigvertb, F., Abdelmoulac, H., & Gild, L. (2018). Additioning alfa fibres in cement mortar. Revista de la Construcción, 17(3), 72-84. http://dx.doi.org/10.7764/rdlc.17.1.72

Chen, J., & Poon, C. S. (2009). Photocatalytic construction and building materials: From fundamentals to applications. Building and Environment, 44(9), 1899-1906. https://doi.org/10.1016/j.buildenv.2009.01.002

Chieng, B. W., Ibrahim, N. A., Daud, N. A., & Talib, Z. A. (2018). Functionalization of graphene oxide via gamma-ray irradiation for hydrophobic materials. In Synthesis, Technology, and Applications of Carbon Nanomaterials (Chapter 8, pp. 177-203). Elsevier. https://doi.org/10.1016/B978-0-12-815757-2.00008-5

Christodoulou, C., Goodier, C. I., Austin, S. A., Webb, J., & Glass, G. K. (2013). Long-term performance of surface impregnation of reinforced concrete structures with silane. Construction and Building Materials, 48, 708-716. https://doi.org/10.1016/j.conbuildmat.2013.07.038

Cohen, J. D., Sierra-Gallego, G., & Tobón, J. I. (2015). Evaluation of photocatalytic properties of Portland cement blended with titanium oxynitride (TiO2 - xNy) nanoparticles. Coatings, 5(3), 465-476. https://doi.org/10.3390/coatings5030465

Dantas, S. R. A., Vittorino, F., & Loh, K. (2019). Photocatalytic performance of white cement mortars exposed in urban atmosphere. Global Journal of Research in Engineering, 19(2-C). http://doi.org/10.34257/gjrecvol19is2pg1

Diamanti, M. V., Brenna, A., Bolzoni, F. A. B. I. O., Berra, M., Pastore, T., & Ormellese, M. (2013). Effect of polymer modified cementitious coatings on water and chloride permeability in concrete. Construction and Building Materials, 49, 720-728. https://doi.org/10.1016/j.conbuildmat.2013.08.050

Diamanti, M. V., Luongo, N., Massari, S., Lupica Spagnolo, S., Daniotti, B., & Pedeferri, M. P. (2021). Durability of self-cleaning cement-based materials. Construction and Building Materials, 280, Article 122442. https://doi.org/10.1016/j.conbuildmat.2021.122442

Duarte, R., Flores-Colen, I., de Brito, J., & Hawreen, A. (2020). Variability of in-situ testing in wall coating systems-Karsten tube and moisture meter techniques. Journal of Building Engineering, 27, Article 100998. https://doi.org/10.1016/j.jobe.2019.100998

Ente Nazionale Italiano di Unificazione. (2016). Fotocatalisi - Determinazione dell'attività fotocatalitica di leganti idraulici - Metodo della rodammina. (UNI 11259:2016).

Esteves, C., Ahmed, H., Flores-Colen, I., & Veiga, R. (2019). The influence of hydrophobic protection on building exterior claddings. Journal of Coatings Technology and Research, 16(5), 1379-1388. https://doi.org/10.1007/s11998-019-00220-7

Etxeberria, M., Guo, M. Z., Maury-Ramirez, A., & Poon, C. S. (2017). Influence of dust and oil accumulation on effectiveness of photocatalytic concrete surfaces. Journal of Environmental Engineering, 143(9), Article 04017040. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001239

Falchi, L., Zendri, E., Müller, U., & Fontana, P. (2015). The influence of water-repellent admixtures on the behavior and the effectiveness of Portland limestone cement mortars. Cement and Concrete Composites, 59, 107-118. https://doi.org/10.1016/j.cemconcomp.2015.02.004

Fornasini, L., Bergamonti, L., Bondioli, F., Bersani, D., Lazzarini, L., Paz, Y., & Lottici, P. P. (2019). Photocatalytic N-doped TiO2 for self-cleaning of limestones. The European Physical Journal Plus, 134(10), Article 539. https://doi.org/10.1140/epjp/i2019-12981-6

Fujishima, F., Hashimoto, K., & Watanabe, T. (1999). TiO2 photocatalysis fundamentals and applications. A Revolution in cleaning technology. Bkc.

Gherardi, F., Goidanich, S., & Toniolo, L. (2018). Improvements in marble protection by means of innovative photocatalytic nanocomposites. Progress in Organic Coatings, 121, 13-22. https://doi.org/10.1016/j.porgcoat.2018.04.010

Han, B., Sun, S., Ding, S., Zhang, L., Yu, X., & Ou, J. (2015). Review of nanocarbon-engineered multifunctional cementitious composites. Composites Part A: Applied Science and Manufacturing, 70, 69-81. https://doi.org/10.1016/j.compositesa.2014.12.002

Han, B., Zhang, L., & Ou, J. (2017). Photocatalytic Concrete. In Smart and multifunctional concrete toward sustainable infrastructures (pp. 299-310). Springer. https://www.springer.com/gp/book/9789811043482

Joni, I. M., Nulhakim, L., & Panatarani, C. (2018). Characteristics of TiO2 particles prepared by simple solution method using TiCl3 precursor. Journal of Physics: Conference Series, 1080, Article 12042. https://doi.org/10.1088/1742-6596/1080/1/012042

Kapridaki, C., & Maravelaki-Kalaitzaki, P. (2013). TiO2-SiO2-PDMS nano-composite hydrophobic coating with self-cleaning properties for marble protection. Progress in Organic Coatings, 76(2-3), 400-410. https://doi.org/10.1016/j.porgcoat.2012.10.006

Kaszynska, M., & Olczyk, N. (2018). The influence of TiO2 nanoparticles on the properties of self-cleaning cement mortar. 18th International Multidisciplinary Scientific GeoConference: SGEM: Surveying Geology & mining Ecology Management, 413-420.

https://doi.org/10.5593/sgem2018/6.3/S26.054

Limeir, J., Agulló, L., & Etxeberria, M. (2012). Dredged marine sand as construction material. European Journal of Environmental and Civil Engineering, 16(8), 906-918. https://doi.org/10.1080/19648189.2012.676376

Luo, Y.-B., Wang, X.-L., & Wang, Y.-Z. (2012). Effect of TiO2 nanoparticles on the long-term hydrolytic degradation behavior of PLA. Polymer Degradation and Stability, 97(5), 721-728. https://doi.org/10.1016/j.polymdegradstab.2012.02.011

Ma, M., & Hill, R. M. (2006). Superhydrophobic surfaces. Current Opinion in Colloid & Interface Science, 11(4), 193-202. https://doi.org/10.1016/j.cocis.2006.06.002

Meng, T., Yu, Y., Qian, X., Zhan, S., & Qian, K. (2012). Effect of nano-TiO2 on the mechanical properties of cement mortar. Construction and Building Materials, 29, 241-245. https://doi.org/10.1016/j.conbuildmat.2011.10.047

National Nanotechnology Coordination Office. (2018). Nanotechnology: Big Things from a Tiny World provides.https://www.nano.gov/sites/default/files/pub_resource/Nanotechnology_Big_Things_Brochure_web_0.pdf

Nochaiya, T., & Chaipanich, A. (2010). The effect of nano-TiO2 addition on Portland cement properties. 3rd International Nanoelectronics Conference (INEC), 1479-1480. https://doi.org/10.1109/INEC.2010.5424777

Paolini, R., Borroni, D., Pedeferri, M., & Diamanti, M. V. (2018). Self-cleaning building materials: The multifaceted effects of titanium dioxide. Construction and Building Materials, 182, 126-133. https://doi.org/10.1016/j.conbuildmat.2018.06.047

RILEM. (1980). Water absorption under low pressure, Pipe method Test Nº II.4, Recommandations provisoires. RILEM TC 25-PEM (pp. 201-202).

Rosales, A., Maury-Ramírez, A., Mejía-De Gutiérrez, R., Guzmán, C., & Esquivel, K. (2018). SiO2@ TiO2 coating: synthesis, physical characterization and photocatalytic evaluation. Coatings, 8(4), Article 120. https://doi.org/10.3390/coatings8040120

Ruot, B., Plassais, A., Olive, F., Guillot, L., & Bonafous, L. (2009). TiO2-containing cement pastes and mortars: Measurements of the photocatalytic efficiency using a rhodamine B-based colorimetric test. Solar Energy, 83(10), 1794-1801. https://doi.org/10.1016/j.solener.2009.05.017

Saini, A., Arora, I., & Ratan, J. K. (2020). Photo-induced hydrophilicity of microsized-TiO2 based self-cleaning cement. Materials Letters, 260, Article 126888. https://doi.org/10.1016/j.matlet.2019.126888

Sangchay, W. (2016). The self-cleaning and photocatalytic properties of TiO2 doped with SnO2 thin film preparation by sol-gel method. Energy Procedia, 89, 170-176. https://doi.org/10.1016/j.egypro.2016.05.023

Schneider, J., Matsuoka, M., Takeuchi, M., Zhang, J., Horiuchi, Y., Anpo, M., & Bahnemann, D. W. (2014). Understanding TiO2 photocatalysis: Mechanisms and materials. Chemical Reviews, 114(19), 9919-9986. https://doi.org/10.1021/cr5001892

Sosnin, I. M., Vlassov, S., & Dorogin, L. M. (2021). Application of polydimethylsiloxane in photocatalyst composite materials: A review. Reactive and Functional Polymers, 158, Article 104781. https://doi.org/10.1016/j.reactfunctpolym.2020.104781

Stanaszek-Tomal, E. (2019). The influence of metabolic sulphuric acid solution on cement mortars (CEM II) modified with nano-TiO2. IOP Conference Series: Materials Science and Engineering, 471(4). https://doi:10.1088/1757-899X/471/4/042007

Stanton, M. M., Ducker, R. E., MacDonald, J. C., Lambert, C. R., & McGimpsey, W. G. (2012). Super-hydrophobic, highly adhesive, polydimethylsiloxane (PDMS) surfaces. Journal of colloid and interface science, 367(1), 502-508. https://doi.org/10.1016/j.jcis.2011.07.053

Swart, M., & Mallon, P. E. (2009). Hydrophobicity recovery of corona-modified superhydrophobic surfaces produced by the electrospinning of poly (methyl methacrylate)-graft-poly (dimethylsiloxane) hybrid copolymers. Pure and Applied Chemistry, 81(3), 495-511. https://doi.org/10.1351/PAC-CON-08-08-15

Theivasanthi, T., & Alagar, M. (2013). Titanium dioxide (TiO2) nanoparticles XRD analyses: An insight. arXivLabs. https://doi.org/10.48550/arXiv.1307.1091

UNE Normalización Española. (2000). Métodos de ensayo de cementos. Determinación de la resistencia mecánica, a una edad determinada de una muestra de cemento (UNE-EN 196-1). Asociación Española de Normalización.

UNE Normalización Española. (2018). Especificaciones de los morteros para albañilería. Parte 1: Morteros para revoco y enlucido (UNE-EN, 998-1). Asociación Española de Normalización.

Vasco Correa, C. A. (2007). Nanotecnología: Revolución tecnológica en progreso. Contribuciones a la Economía. http://www.eumed.net/ce/2007b/cavc.htm

Wang, D., Hou, P., Zhang, L., Yang, P., & Cheng, X. (2017). Photocatalytic and hydrophobic activity of cement-based materials from benzyl-terminated-TiO2 spheres with core-shell structures. Construction and Building Materials, 148, 176-183. https://doi.org/10.1016/j.conbuildmat.2017.05.038

Wooh, S., Encinas, N., Vollmer, D., & Butt, H.-J. (2017). Stable Hydrophobic Metal-Oxide Photocatalysts via Grafting Polydimethylsiloxane Brush. Advanced Materials, 29(16), 1604637. https://doi.org/10.1002/adma.201604637

Zhang, R., Cheng, X., Hou, P., & Ye, Z. (2015). Influences of nano-TiO2 on the properties of cement-based materials: Hydration and drying shrinkage. Construction and Building Materials, 81, 35-41. https://doi.org/10.1016/j.conbuildmat.2015.02.003

results

Downloads

Published

2022-06-13

How to Cite

Paiz-Rosales, J., Guerrero-Gutiérrez, E. M. A., Arrechea, S., Velásquez, L., Díaz, R., Torres, S., Barrientos, C., & García, E. (2022). Photocatalytic activity of white cement-based mortars with polysiloxane silicone and different doses of titanium dioxide nanoparticles. Ciencia, Tecnología Y Salud, 9(1), 82–97. https://doi.org/10.36829/63CTS.v9i1.1011

Issue

Section

Artículos científicos