Asociación del Grupo Sanguíneo ABO con la Susceptibilidad a COVID-19
DOI:
https://doi.org/10.36829/63CTS.v7i3.987Abstract
La pandemia de COVID-19, causada por el virus SARS-CoV-2, ha infectado ya a más de 25 millones de personas, ocasionando más de 850,000 muertos y causando serios problemas en hospitales y sistemas de salud en todo el mundo. Una de las mayores dificultades que presenta la infección por SARS-CoV-2 es su gran variación en presentación clínica, que puede ir desde casos asintomáticos hasta síndromes de distrés respiratorio agudo, fallo múltiple de órganos y muerte. De aquí la importancia del estudio de factores demográficos, clínicos y genéticos que permitan la identificación de personas con mayor riesgo de adquirir la infección y sufrir manifestaciones graves de la enfermedad. Un número creciente de reportes en la literatura han sugerido que el grupo sanguíneo ABO está relacionado con el riesgo a COVID-19, coincidiendo en que personas con sangre del grupo A muestran el mayor riesgo, mientras que personas con sangre del grupo O el menor. Los objetivos de esta revisión son presentar un resumen de la evidencia existente en la literatura científica reciente y discutir estas observaciones en el contexto del conocimiento sobre la asociación de los grupos sanguíneos a varias infecciones y otras enfermedades, así como de los mecanismos potenciales involucrados. Finalmente, las implicaciones de la relación entre el grupo sanguíneo y susceptibilidad a COVID-19 son también discutidas con relación a la población guatemalteca.Downloads
References
Anstee, D. J. (2010). The relationship between blood groups and disease. Blood, 115(23), 4635-4643. https://doi.org/10.1182/blood-2010-01-261859
Becker, R. C. (2020). COVID-19 update: Covid-19-associated coagulopathy. Journal of Thrombosis and Thrombolysis, 50(1), 1-14. https://org.doi/10.1007/s11239-020-02134-3
Berlin, D. A., Gulick, R. M., & Martinez, F. J. (2020). Severe Covid-19. New England Journal of Medicine. https://doi.org/10.1056/NEJMcp2009575
Breiman, A., Ruvën-Clouet, N., & Le Pendu, J. (2020). Harnessing the natural anti-glycan immune response to limit the transmission of enveloped viruses such as SARS-CoV-2. PLoS Pathogens, 16(5), e1008556. https//doi.org/10.1371/journal.ppat.1008556
Chen, J., Fan, H., Zhang, L., Huang, B., Zhu, M., Zhou, Y., ... Zhang, H. (2020). Retrospective analysis of clinical features in 101 death cases with COVID-19. medRxiv. https://doi.org/10.1101/2020.03.09.20033068
Chen, N., Zhou, M., Dong, X., Qu, J., Gong, F., Han, Y., ... Zhang, X. (2020). Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet, 395(10223), 507-513. https://doi.org/10.1016/S0140-6736(20)30211-7
Cheng, Y., Cheng, G., Chui, C. H., Lau, F. Y., Chan, P. K. S., Ng, M. H. L., ... Wong, R. S. M. (2005). ABO blood group and susceptibility to severe acute respiratory syndrome. Journal of the American Medical Association, 293(12), 1450-1451. https://doi.org/10.1001/jama.293.12.1450-c
Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. (2020). The species Severe acute respiratory virus syndrome-related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2. Nature Microbiology, 5, 536-544. https://doi.org/10.1038/s41564-020-0695-z
Ewald, D. R., & Summer, S. C. J. (2016). Blood type biochemistry and human disease. WIREs Biology and Medicine, 8(6), 517-535. https://doi.org/10.1002/wsbm.1355
Franchini, M., Favaloro, E. J., Targher, G., & Lippi, G. (2012). ABO blood group, hypercoagulability, and cardiovascular and cancer risk. Critical Reviews in Clinical Laboratory Sciences, 49, 137-149. https://doi.org/10.3109/10408363.2012.708647
Fry, A. E., Griffiths, M. J., Auburn, S., Diakite, M., Forton, J. T., Green A, ... Kwiatkowski, D. P. (2008). Common variation in the ABO glycosyltransferase is associated with susceptibility to severe Plasmodium falciparum malaria. Human Molecular Genetics, 17(4), 567-576. https://doi.org/10.1093/hmg/ddm331
Green, C. (1989). The ABO, Lewis and related blood group antigens; a review of structure and biosynthesis. FEMS Microbiology and Immunology, 1, 321-330. https://doi.org/10.1111/j.1574-6968.1989.tb02417.x
Guillon, P., Clément, M., Sébille, V., Rivain, J.-G., Chou, C.-F., Ruvoën-Clouet, N., … Le Pendu, J. (2008). Inhibition of the interaction between the SARS-CoV spike protein and its cellular receptor by anti-histo-blood group antibodies. Glycobiology, 18(12), 1085-1093. https://doi.org/10.1093/glycob/cwn093
Harris, J. B., Khan, A. I., LaRocque, R. C., Dorer, D. J., Chowdhury, F., Faruque, A. S. G., … Calderwood, S. B. (2005). Blood group, immunity, and risk of infection with Vibrio cholerae in an area of endemicity. Infection and Immunity, 73(11), 7422-7427. https://doi.org/10.1128/IAI.73.11.7422-7427.2005
Johns Hopkins University Medicine. (2020). COVID-19 Data Repository by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University. Recuperado el 31 de agosto de 2020, de https://coronavirus.jhu.edu/map.html
Kuba, K., Imai, Y., Ohto-Nakanishi, T., & Penninger, J. M. (2010). Trilogy of ACE2: A peptidase in the renin-angiotensin system, a SARS receptor, and a partner for amino acid transporters. Pharmacology and Therapy, 128(1), 119-128. https://doi.org/10.1016/j.pharmthera.2010.06.003
Li, H., Liu, Z., & Ge, J. (2020). Scientific research progress of COVID-19/SARS-CoV2 in the first five months. Journal of Cell and Molecular Medicine, 24(12), 6558-6570. https://doi.org/10.1111/jcmm.15364
Li, J., Wang, X., Chen, J., Cai, Y., Deng, A., & Yang, M. (2020). Association between ABO blood groups and risk of SARS-CoV2 pneumonia. British Journal of Haematology, 190(1), 24-27. https://doi.org/10.1111/bjh.16797
Limbruno, G. M., & Franchini, M. (2013). Beyond immunohaematology: The role of the ABO group in human diseases. Blood Transfusion, 11, 491-499. https://doi.org/10.2450/2013.0152-13
Liu, J., Li, S., Lui, J., Liang, B., Wang, X., Li, W., … Zheng, X. (2020). Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2-infected patients. EBioMedicine, 55, 102763. https://doi.org/10.1016g/j.ebiom.2020.102763
López-Pacheco, C., Soldevilla, G., Du Pont, G., Hernández-Pando, R., & García-Zepeda, E. A. (2016). CCR9 is a key regulator of early phases of allergic airway inflammation. Mediators of Inflammation, 2016, 3635809. https://doi.org/10.1155/2016/3635809
Miller, L. H., Mason, S. J., Clyde, D.F., & McGinniss, M. H. (1976). The resistance factor to Plasmodium vivax in blacks: The Duffy blood group genotype FyFy. New England Journal of Medicine, 295(6), 302-304. https://doi.org/10.1056/NEJM197608052950602
Rowe, J. A., Handel, I. G., Thera, M. A., Deans, A. M., Lyke, K. E., Koné, A., ... Moulds, J. M. (2007). Blood group O protects against severe Plasmodium falciparum malaria through the mechanism of reduced resetting. Proceeding of the Nationall Academy of Sciences USA, 104(44), 17471-17476. https://doi.org/10.1073/pnas.0705390104
Tejada, C., Sánchez, M., Guzmán, M. A., Bregni. E., & Scrimshaw, N. S. (1961). Distribution of blood antigens among guatemalan indians. Human Biology, 33(4), 319-334.
Ellinghaus, D., Degenhardt, F., Bujanda, L., Buti, M., Albillos, A., Invernizzi, P., Fernández, J., … Karlsen, T. H. (2020). Genomewide association study of severe Covid-19 with respiratory failure. New England Journal of Medicine, https://doi.org/10.1056/NEJMoa2020283
Wein, A. N., McMaster, S. R., Takamura, S., Dunbar, P. R., Cartwright, E. K, Hayward, S. L., ... Kohlmeier, J. E. (2019). CXCR6 regulates localization of tissue-resident memory CD8 T cells to the airways. Journal of Experimental Medicine, 216(12), 2748-2762. https://doi.org/10.1084/jem.20181308
Wu, Z., & McGoogan, J. M. (2020). Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: Summary of a report of 72,314 cases from the Chinese Center of Disease Control and Prevention. Journal of the American Medical Association, 323(13), 1239-1242. https://doi.org/10.1001/jama.2020.2648
Yang, X., Yu, Y., Xu, J., Shu, H., Xia J, Liu, H., ... Shang, Y. (2020). Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: A single-centered, retrospective, observational study. Lancet Respiratory Medicine, 8(5), 475-481. https://doi.org/10.1016/S2213-2600(20)30079-5
Zeng, X., Fan, H., Lu, D., Huang, F., Meng, X., Li, Z., ... Hu, X. (2020). Association between ABO blood groups and clinical outcome of coronavirus disease 2019: Evidence from two cohorts. medRxiv. https://doi.org/10.1101/2020.04.15.20063107
Zhao, J., Yang, Y., Huang, H., Li, D., Gu, D., Lu, X., ... Wang, P. G. (2020). Relationship between the ABO blood group and the COVID-19 susceptibility. medRxiv. https://doi.org/10.1101/2020.03.11.20031096
Zhou, F., Yu, T., Du, R., Fan, G., Lui, Y., Liu, Z., ... Cao, O. (2020). Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet, 395(10229), 1054-1062. https://doi.org/10.1016/S0140-6736(20)30566-3
Zietz, M., & Tatonetti, N. P. (2020). Testing the association between blood type and COVID-19 infection, intubation and death. medRxiv. https://doi.org/10.1101/2020.04.08.20058073
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Rafael Fernández-Botrán
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
El autor que publique en esta revista acepta las siguientes condiciones:
- El autor otorga a la Dirección General de Investigación el derecho de editar, reproducir, publicar y difundir el manuscrito en forma impresa o electrónica en la revista Ciencia, Tecnología y Salud.
- La Direción General de Investigación otorgará a la obra una licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional