Principales plantas medicinales disponibles en Guatemala con actividad contra virus respiratorios que infectan al ser humano – Revisión narrativa
DOI:
https://doi.org/10.36829/63CTS.v7i3.978Abstract
Las infecciones respiratorias constituyen una importante causa de morbilidad y mortalidad a nivel mundial, incrementándose su relevancia ante la reciente infección por SARS-CoV-2, causante de la pandemia de COVID-19. Las opciones terapéuticas para esta infección respiratoria son escasas y sin eficacia comprobada. El objetivo de esta revisión fue buscar la información sobre plantas con actividad antiviral o viricida publicada en los últimos 10 años, en las bases de datos de Google Scholar, Scopus y PubMed. La búsqueda priorizó aquellas especies disponibles en Guatemala, la cual se complementó con la búsqueda de moléculas con actividad antiviral para finalmente postular aquellas que puedan prevenir la infección o aminorar la patogénesis del SARS-CoV-2. Se detectaron más de 170 especies con actividad antiviral y se organizó la información por país o región y tipo de actividad antiviral contra virus específicos. De las especies de mayor disponibilidad en Guatemala se seleccionaron 20. La revisión culmina con 15 artículos que proponen plantas o moléculas con potencial actividad específica en el manejo de la pandemia por SARS-CoV-2. Se concluye que existen especies vegetales (Curcuma longa, Echinacea purpurea, Psidium guajava, Allium sativum, Salvia officinalis y Eucalyptus globulus) y fitocompuestos vegetales (hesperidina, rutina, diosmina, apiina, aloe-emodina, piperina, capsaicina, curcumina, oleuropeina, rhamnetina y gallato de epicatequina) que podrían contribuir al manejo de la enfermedad. Se insta
a académicos y autoridades a poner más atención a estas opciones terapéuticas que nos ofrece la naturaleza y que podrían contribuir a aliviar el colapso de los sistemas de salud prevalentes
Downloads
References
Abad, M. J., Bermejo, P., Villar, A., Sanchez Palomino, S., & Carrasco, L. (1997). Antiviral activity of medicinal plant extracts. Phytotherapy Research, 11, 198-202. https://doi.org/10.1002/(SICI)1099.1573(199705)11:3<198::AID-PTR78>3.0.CO;2-L
Abdul Kadir, S. L., Yaakob, H., & Zulkifli, R. M. (2013). Potential anti-dengue medicinal plants: a review. Journal of Natural Medicine, 67, 677-689. https://doi.org/10.1007/s11418-013-0767-y
Adam, S., Eyupoglu, V., Sarfraz, I., Rasuli, A., & Ali, M (2020). Identification of potent Covid-19 main protease (Mpro) inhibitors from natural polyphenols: An in silico strategy unveils a hope against Corona. Preprints 2020, 23 march. https://doi.org/10.20944/preprint202003.0333.v1
Agudelo-Gómez, L. S., Gómez-Ríos, G. A, Durán-García, D. C., Stashenko, E., & Betancur-Glavis, L. (2010). Composición química y evaluación de la actividad antiherpética in vitro de aceites esenciales de Lippia alba (Mill) N.E. Brown y sus componentes mayoritarios. Salud UIS, 42, 230-239.
Ahmad, A., Rehman, M. U., & Alkharfy, K. M. (2020). An alternative approach to minimize the risk of coronavirus (Covid-10) and similar infections. European Review for Medical and Pharmacological Sciences, 24, 4030-4034.
Akram, M., Tahir, I. M., Shah, S. M. A., Mahmood, Z., Altaf, A., Ahmad, K., … Mehboob, H. (2018). Antiviral potential of medicinal plants against HIV, HSV, influenza, hepatitis, and coxsackievirus: A systematic review. Phytotherapy Research, 32, 811-822. https://doi.org/10.1002/ptr.6024
Alabi, A. O., Ajayi, A. M., Omorogbe, O., & Umukoro, S. (2019). Anti-nociceptive and anti-inflammatory effects of an aqueous extract of blended leaves of Ocimum gratissimum and Psidium guajava. Clinical Phytoscience, 5, 34. https://doi.org/10.1186/s40816-0190130-2
Alam, K., Hoq, O., & Uddin, S. (2016). Medicinal plants Allium sativum = A review. Journal of Medicinal Plants Studies, 4, 72-7.
Al-Ballawi, Z. F. S., Redhwan, N. A. & Ali, M. (2017). In vitro studies of some medicinal plants extracts for antiviral activity against rotavirus. IOSR Journal of Pharmacy and Biological Sciences, 12, 53-58. https://10.9790/3008-1202025358
Allahverdiyev, A., Duran, N., Ozguven, M., & Koltas, S. (2004). Antiviral activity of the volatile oil of Melissa officinalis L. against Herpes simplex virus type-2. Phytomedicine, 11, 657-661. https://doi.org/10.1016/j.phymed.2003.07.014
Al-Snafi, A. E. (2018). Pharmacological and therapeutic activities of Hedera helix. IOSR Journal of Pharmacy, 8, 41-62.
Al-Snafi, A. E. (2019). Medicinal plants with antiviral effect – A review. IOSR Journal of Pharmacy, 9, 57-75
Amber, A., Adnan, M., Tariq, A., & Mussarat, S. (2016). A review on antiviral activity of the Himalayan medicinal plants traditionally used to treat bronchitis and related symptoms. Journal of Pharmacy and Pharmacology, 6, 109-122. https://doi.org/10.1111/jphp.12669
Andrighetti-Fröhner, C. R., Sincero, T. C. M., da Silva, A. C., Savi, L. A., Gaido, C. M., Bettega, J. M. R., … Simões, C. M. O. (2005). Antiviral evaluation of plants from Brazilian Atlantic tropical forest. Fitoterapia, 76, 374-378. https://doi.org/10.1016/j.fitote.2005.03.010
Ang, L., Lee, H. W., Kim, A., Lee, J. A., Zhang, J., & Lee, M. S. (2020). Herbal medicine for treatment of children diagnosed with Covid-19: A review of guidelines. Complementary Therapies in Clinical Practice, 39, 101174. https://doi.org/10.1016/J.CTCP.2020.101174
Angamuthu, D., & Swaminathan, R. (2019) Evaluation of antiviral efficacy of Punica granatum L. on human herpes virus-3 (Varicella Zooster virus. Asian Journal of Biological Sciences, 12, 917-23. https://doi.org/10.323/ajbs.2019.917.926
Anywar, G., Kakudidi, E., Byamukama, R., Mukonzo, J., Schubert, A., & Oryem-Origa, H. (2020). Medicinal plants used by traditional medicine practitioners to boost the immune system in people living with HIV/AIDS in Uganda. European Journal of Integrative Medicine, 35, 101011. https://doi.org/10.1016/j.eujim.2019.101011
Arbab, A. H., Parvez, M. K., Al-Dosari, M. S., & Al-Rehaily, A. J. (2017). In vitro evaluation of novel antiviral activities of 60 medicinal plants extracts against hepatitis B virus. Experimental and Therapeutic Medicine, 14, 626-634. https://doi.org/10.3892/etm.2017.4530
Ashraf, M., Alam, S. S., Fatima, M., Altaf, I., Khan, F., & Afzal, A. (2017), Comparative anti-influenza potential of Moringa oleifera leaves and amantadine in vitro. Pakistan Postgraduate Medical Journal, 28, 127-131.
Astani, A., Reichling, J., & Schnitzer, P. (2009). Comparative study on the antiviral activity of selected monoterpenes derived from essential oils. Phytotherapy Research, 24, 673-679. https://doi.org /10.1002/ptr.2955
Astani, A., Reichling, J., & Schnitzler, P (2011). Screening for antiviral activities of isolated compounds from essential oils. Evidence-Based Complementary and Alternative Medicine, 2011, ID 253643. https://doi.org/10.1093/ecam/nep187
Baikerikar, S. (2017). Curcumin and natural derivatives inhibit Ebola viral proteins: An in silico approach. Pharmacognosy Research, 9, 15-22.
Bailly, F., Queffelec, C., Mbemba, G., Mouscadet, J.-F., & Cotelle, P. (2005). Synthesis and HIV-1 integrase inhibitory activities of caffeic acid dimers derived from Salvia officinalis. Bioorganic & Medicinal Chemistry Letters, 15, 5053-5056. https://di.org/10.1016/j.bmc.2005.07.091
Baroni, A., Paloetti, I., Ruocco, E., Ayala, F., Corrado, F., Wolf, R., ... Donnarumma, G. (2007). Antiviral effects of quinine sulfate on HSV-1 HaCat cells infected: Analysis of the molecular mechanisms involved. Journal of Dermatological Science, 47, 253-255.
Bayan, L., Koulivand, P. H., & Gorji, A. (2014). Garlic: a review of potential therapeutic effects. Avicenna Journal of Phytomedicine, 4, 1-14. https://doi.org/10.1016/j.phymed.2007.10.006
Bedoya, L. M., Álvarez, A., Bermejo, M., González, N., Beltrán, M., Sánchez-Palomino, S., …, Alcami, J. (2008). Guatemalan plants extracts as virucides against HIV-1 infection. Phytomedicine, 15, 520-524. https://doi.org/10.1016/j.phymed.2007.10.006
Ben-Shabat, S., Yarmolinsky, L., Porat, D., & Dahan. A. (2020). Antiviral effect of phytochemicals from medicinal plants: Applications and drug delivery strategies. Drug Delivery and Translational Research, 10, 354-367. https://doi.org/10.1007/s13346-019-00691-6
Bekut, M., Brki?, S., Kladar, N., Dragovi?, G, Gavari?, N., & Božin. B. (2018). Potential of selected Lamiaceae plants in anti(retro)viral therapy. Pharmacological Research, 133, 301-314. https:/doi.org/10.1016/j.phrs.2017.12.016
Biswas, D., Nandy, S., Mukherjee, A., Pandey, D. K., & Dey, A. (2019). Moringa oleifera Lam. and derived phytochemicals as promising antiviral agents: A review. South African Journal of Botany, 129, 272-262. https://doi.org/10.1016/j.sajb.2019.07.049
Bonfim, C. M., Monteleoni, L. F., Calmon, M. F., Cândido, N. M., Provazzi, P. J. C., Lino, V. S., … Rahal, P. (2020). Antiviral activity of curcumin-nanoemulsion associated with photodynamic therapy in vulvar cell lines transducing different variants of HPV-16. Artificial Cell, Nanomedicine, and Biotechnology, 48, 515-524. https://doi.org/10.1080/21691401.2020.1725023
Brezáni, V., Lelákova, V., Hasan, S. T. S., Berchová-Bimová, K., Nový, P., Klou?ek, P., … Šmejkal, K. (2018). Anti-infectivity against herpes simplex virus and selected microbes and anti-inflammatory activities of compounds isolated from Eucalyptus globulus Labill. Viruses, 10, 360. https://doi.org/10.3390/v10070360
Bridgemohan, P., Goordeen, A., Mohammed, M., & Bridgemohan, R.S. G. (2020). Review on the agro-ecology, phytochemistry, postharvest technology and utilization of moringa (Moringa oleifera Lam.). Journal of Horticulture and Postharvest Research, 3, 311-332.
Cao, P., Xie, P., Wang, X., Wang, J., Wei, J., & Kang, W.-Y. (2017). Chemical constituents and coagulation activity of Agastache rugosa. BMC Complementary and Alternative Medicine, 17, 93. https://doi.org/10.1186/s12906-017-1592-8
Cecílio, A. B., de Faria, D. B., Oliveira, P. C., Caldas, S., de Oliveira, D. A., Sobral, M, G. R., …, de Almeida, V. L. (2012). Screening of Brazilian medicinal plants for antiviral activity against rotavirus. Journal of Ethnopharmacology, 141, 75-81. https://doi.org/10.1016/j.jep.2012.03.031
Chamdel, V., Raj, S., Rathi, B. & Kumar, D. (2020). In silico identification of potent Covid-19 main protease inhibitors from FDA approved antiviral compounds and active phytochemicals through molecular docking: A drug repurposing approach. Preprints, 2020. https://doi.org/10.20944/preprints202003.0349.v1
Chang, J. S., Wang, K. C., Yeh, C. F., Shieh, D. E., & Chiang, C. (2013). Fresh ginger (Zingiber officinale) has anti-viral activity against human respiratory syncytial virus in human respiratory tract cell lines. Journal of Ethnopharmacology, 145, 146-151. https://doi.org/10.1016/j.jep.2012.10.043
Chen, S.-G., Leu, Y.-L., Cheng, M.-L., Ting, S. C., Liu, C., Wang, S.-D., … Ho, H.-Y. (2017). Anti-enterovirus 71 activities of Melissa officinalis extract and its biological active constituent rosmarinic acid. Scientific Reports, 17, 1-16. https://doi.org/10.1038/s42508-017-12388-2
Chiamenti, L., da Silva, F. P., Schallemberger, K., Demoliner, M., Rigotto, M. D. C., & Flec, J. D. (2019). Cytotoxicity and antiviral activity evaluation of Cymbopogon spp hydroethanolic extracts. Brazilian Journal of Pharmaceutical Sciences, 55, e18063. http://dx.doi.org/s2175-979020190001186063
Chiang, L.-C., Ng, L.-T., Cheng, P.-W., Chiang W., & Lin, C.-C. (2005). Antiviral activities of extracts and selected pure constituents of Ocimum basilicum. Clinical and Experimental Pharmacology and Physiology, 32, 811-816. https://doi.org/10.1111/j.1440-1681.2005.04270.x
D’Alessandro, S., Scaccabarozzi, D., Signorini, L., Perego, F., Ilbuono, D. P., Ferrante, P., & Delbue, S. (2020). The use of antimalarial drugs against viral infection. Microorganisms, 8, 85. https://doi.org/10.330/microorganisms8010085
D’Souza, D. H., Dice, L. & Davidson, P. M. (2016). Aqueous extracts of Hibiscus sabdariffa calyces to control Aichi virus. Food Environmental and Virology, 8, 112-119. https://doi.org(10.1007/s12560-016-9229-5
Dahake, R., Roy, S., Patil, D., Rajopadhye, S., Chowdhary, A., & Dashmukh, R. A. (2013). Potential anti-HIV activity of Jatropha curcas Linn. leaf extracts. Journal of Antivirals & Antiretrovirals, 5, 7. https://doi.org/10.4172/jaa.1000082
Das Mahapatra, A., Bhowmik, P., Banerjee, A., Das, A., Ojha, D., & Chattopadhyay, D. (2019). Ethnomedicinal wisdom: An approach for antiviral drug development (pp 35-61). En: M. S. Ahmad Khan, I. Ahmad, & D. Chattopadhyay (Eds.) - New Look to Medicine. London: Academic Press. https://doi.org/10.1016/B78-0-12-814619-4.00003-3
Davood, A. A., Javad, Z. M., Alimohammad, A., Abbas, A. A. & Hamidreza, M. (2012). Evaluation effect of hydroalcoholic extract of Eucalyptus globulus and Eucalyptus draconculus compared with acyclovir against Herpes simplex virus type 1. Medicinal Plant Research, 2, 6-10.
Denaro, M., Smeriglo, A., Barreca, D., de Franceso, C., Occhiuto, C., Milano, G., & Trombetta, D. (2019). Antiviral activity of plants and their isolated bioactive compounds: An update. Phytotherapy Research, 34, 742-768. https://doi.org/10.1992/ptr.6575
Dewi, B. E., Taufiqqurrachmann, I., Desti, H., Sudiro, M., Firthriyah, & Angelina, M (2019). Inhibition mechanism of Psidium guajava leaf to dengue virus replication in vitro. IOP Conference Series: Earth and Environmental Science, 463, 012034. https://doi.org/10.1988/175-1315/462/1/012034
Dhakad, A. K., Pandey, V. V., Beg, S., & Rawar, J. M. (2018). Biological, medicinal and toxicological significance of Eucalyptus leaf essential oil: a review. Journal of the Science of Food and Agriculture, 98, 833-848. https://doi.org//10.1002/jsfa.8600
Divya, M., Vijayakumar, S., Chen, J., Vaseenharan, B., & Durán-Lara, E. F. (2020). A review of South Indian medicinal plants has the ability to combat against deadly virus along with COVID-19? Microbial Pathogenesis, 104177. https://doi.org/10.1016/j.micpath.2020.104277
Dobrange, E., Peshev, D., Ledoff, B., & Van den Ende, W. (2019). Fructans as immunomodulatory and antiviral agents: The case of Echinacea. Biomolecules, 9, 615. https://doi.org/10.330/biom9100615
Du, T., Dong, N., Fang, L., Lu, J., Bi, J., Xiao, S. & Han, H. (2020) Multi-site inhibitors for enteric Coronavirus: Antiviral cationic carbon dots based on curcumin. ACS Applied Nano Materials, (accepted). https://doi.org/10.1021/acsanm.8b00779
Durzy?ska, J. & Go?dzicka-Józefiak. A. (2015). Viruses and cell intertwined since the dawn of evolution. Virology Journal, 12, 169. https://doi.org//10.1186/s12985-015-0400-7
Ebenezer, K. S., Manivannan, R., Punniyanoorthy, A., & Tamilselvan, C. (2019). Plant secondary metabolites of antiviral properties a rich medicinal source for drug discovery: A mini-review. Journal of Drug Delivery and Therapeutics, 9, 161-167. https://doi.org/10.22270/jddt.v9i5.3471
El-Saber Batiha, G., Beshbishy, A. M., Wasef, L. G., Elewa, Y. H. A., Al-Sagan, A. A., Abd El-Hack, M. E., … Davkota, H- P- (2020). Chemical constituents and pharmacological activities of garlic (Allium sativum L.): A review. Nutrients, 12, 872. https://doi.org/10.3390/nu12030872
El-Tantawy, W. H., & Tenraz, A. (2018126,). Natural products for the management if the hepatitis C virus: a biochemical review. Archives of Physiology and Biochemistry, 126, 116-128. https://doi.org/10.1080/13813455.2018.1498902
Erlina, L., Paramita, R. I., Kusuma, W. A., Fadilah, F., Tedjo, A., Pratomo, I. P., ... Yanur, A. (2020). Virtual screening on Indonesian herbal compounds as COVID-19 supportive therapy: Machine learning and pharmacophore modeling approaches. BMC Medical Informatics and Decision Making, https://doi.org/10.21203/rs.3.rs-29119/v1
Fan, Y., Zhang, Y., Tariq, A., Jiang, X., Ahmad, Z, Zhihao, Z., … Bussmann, R. W. (2020). Food as medicine: a possible preventive measure against coronavirus disease (COVID-19). Phytotherapy Research, Ahead of print. https://doi.org/10.1002/ptr.6770
Feriotto, G., Marchetti, N., Costa, V., Beninah, S., Tagliati, F., & Mischiati. (2017). Chemical composition of essential oil from Thymus vulgaris, Cymbopogon citratus and Rosmarinus officinalis and their effect and their effects on de HIV-1 Tat protein function. Chemistry & Biodiversity, 15, https://doi.org/10.1002/cbdv.201700436
Feustel, S., Ayón-Pérez, F., Sandoval-Rodriguez, A., Rodríguez-Echeverría R., Contreras-Salinas, H., Armendáriz Borunda, J., & Sánchez-Orozco, L. V. (2017). Protective effects of Moringa oleifera on HBV genotypes C and H transiently transfected Huh7 cells. Journal of Immunology Research, 2017, ID 6063850. https://doi.org/10.1155/2017/6063850
Fischer, A., Sellner, M., Neranjan, S., Smieško, M., & Lill, M. A. (2020). Potential inhibitors for novel coronavirus protease identified by virtual screening of 606 million compounds. International Journal of Molecular Sciences, 21, 3626. https://doi.org/10.3390/ijms21103626
Fusco, D., Liu, X., Pavage, C., Taur, Y., Xiao, W., Kennelly, E., … Papanicolaou, G. A. (2010). Echinacea purpurea aerial extract alters course of influenza infection in mice. Vaccine, 28, 3956-3962. https://doi.org/10.1016/j.vaccine.2010.03.047
Gabaglio, S., Alvarenga, N., Cantero-González, G., Degen, R., Ferro, E. A., Langjahr, P., … Sotelo, P. H. (2019). A quantitative PCR assay for antiviral activity screening of medicinal plants against Herpes simplex 1. Natural Product Research, 2019, https://doi.org/10.1080/14786419.2019.1675064
Galabov, A. S., Nikolaeva-Glomb, L., Mukova, L., Ajvazova, E., Remichkova, M., Georgieva, I., & Cseuz, M. (2017). Large-scale antiviral activity screening of a triplex mixed herbal extract. International Journal of Herbal Medicine, 5, 169-176.
Gandhi, G. R., Barreto, P., G., Lima, B. D., Quintans, J. D. S., Araújo, A. A. D., Narain, N., … Gurgel, R. Q. (2016). Medicinal plants and natural molecules with in vitro and in vivo activity against rotavirus: A systematic review. Phytomedicine, 23, 1830-1842. https://doi.org/10.1017/j. phytomed.2016.11.005
Gómez, L. A., Stashenko, E., & Ocazionez, R. E. (2012) Comparative study on in vitro activities of citral, limonene and essential oil from Lippia citriodora and L. alba on yellow fever virus. Natural Product Communications, 8, 249-252.
Gondim, F. L., dos Santos, G. R., Serra, D. S., & Cavalcante, F. S. A. (2019). Natural compounds inthe treatment of inflammatory lung disease: An approach on eucalyptol. En S. Borek - Recent Advances in Biological Research (pp. 42-55), Vol. 4. Book Publisher International. https://doi.org/10.9734/bpi/rabr/v4
Gonzalez-Paz, L. A., Lossada, C. A., Moncayo, L. S., Romero, F., Paz, J. L., Vera-Villalobos, J. … Alvarado, Y. J. (2020). Theoretical molecular docking study of the structural disruption of the viral 3CL-protease of COVID19 induced by binding of capsaicin, piperine and curcumin Part 1: A comparative study with chloroquine and hydrochloroquine to antimalaric drugs. Research Square (preprint). https://doi.org/10.21203/rs-3-rs-21206/v1
Gordani, A., & Esmaeilizadeh. M. (2017). Pharmacological properties of Salvia officinalis and its components. Journal of Traditional and Complementary Medicine, 7, 433-440. https://doi.org/10.1016/j.jtcm.2016.12.014
Goswami, D., Mukherjee, P. K., Kar, A., Ojha, D., Roy, S., & Chattopadhyay, D. (2016). Screening of ethnomedicinal plants of diverse culture for antiviral potentials. Indian Journal of Traditional Knowledge, 15, 474-481.
Haque, N., Sofi, G., Ali, W., Rashid, M., & Itrat, M. (2015). A comprehensive review of phytochemical and pharmacological profile of anar (Punica granatum Linn.): A heaven´s fruit. Journal of Ayurvedic and Herbal Medicine, 1, 22-26.
Haslberger, A., Jacob, U., Hippe, B., & Karlic, H. (2020). Mechanisms of selected functional foods against viral infections with a view on COVID-19: Mini review. Functional Foods in Health and Disease, 10, 195-209. https://doi.org/10.31989/ffhd.v.10i5-707
Hay, E., Lucariello, A., Contieri, M., Esposito, T., De Luca, A., Guerra, G., & Perna, A. (2019). Therapeutic effects of turmeric in several diseases: An overview. Chemico-Biological Interactions, 310, 108729. https://doi.org/10.1016/j.cbi.2019.108729
Herrmann, F., Romero, M. R., Blazquez, A. G., Kaufman, D., Ashour, M. L., Kahl, S., ... Wink, M. (2011). Diversity of pharmacological properties in Chinese and European medicinal plants: Cytotoxicity, antiviral and antitrypanosomal screening of 82 herbal drugs. Diversity, 4, 547-580. https://doi.org/10.3390/d3040547
Hassan, S. T. S., Švajdenka, E., & Bimová, K. (2017). Hibiscus sabdariffa L. and its bioactive constituents exhibit antiviral activity against HSV-2 and anti-enzymatic properties against urease by an ESI-MS based assay. Molecules, 22, 722. https://doi.org/10.3390/molecules22050722
Hong, E.-Y., Song, J.-H., Shim, A., Lee, B-R., Kwon, B-E., Song, H.-H., …, Ko, H.-J. (2015). Coadministration of Hedera helix L. extract enabled mice to overcome in sufficient protection against influenza A7PR78 virus infection under suboptimal treatment with osetamivir. PLoS One, 10, e013108. https://doi.org/10.1371/journal.pone.0131089
Hudson, J. B. (1990). Antiviral Compounds from Plants. Boca Ratón: CRC Press.
Hudson, J. B. (2012). Applications of the phytomedicine Echinacea purpurea (purple coneflower) in infectious diseases. Journal of Biomedicine and Biotechnology, 2012, 769896. https://doi.org/10.1155/2012/769896
Humphreys, B., & Busath, D.D. (2019). Anti-influenza nutraceuticals: Antiviral and anti-inflammatory effects. Advances in in Complementary and Alternative Medicine, 4, 358-373. https://doi.org/10.31031/ACAM.2019.04.000590
Ismail, T., Sestili, P., & Akhtar, S. (2012). Pomegranate peel and fruit extracts: A review of potential anti-inflammatory and anti-infective effects. Journal of Ethnopharmacology, 143, 397-405. https://doi.org/10.1016/j.jep.2012.07.004
Jalali, P., Moattari, A., Mohammadi, A., Ghazanfari, N., & Porghanbari, G. (2016). Melissa officinalis efficacy against human influenza virus (New N1H1) in comparison with oseltamivir. Asian Pacific Journal of Tropical Diseases, 6, 714-717. https://doi.org/10.1016/S2222-1808(16)61115-5
Jassim, S. A. A., & Najo, M. A. (2003). Novel antiviral agents: a medicinal plant perspective. Journal of Applied Microbiology, 95, 412-427. https://doi.org/10.1046/j.1365-2672.2003.02.026.x
Joshi, B., Panda, S. K., Jouneghani, R. S., Liu, M., Parahuli, N., Leyssen, P., …, Luyten, W. (2020). Antibacterial, antifungal, antiviral, and anthelmintic activities of medicinal plants of Nepal selected based on ethnobotanical evidence. Evidence-Based Complementary and Alternative Medicine, 2020, ID 1043471. https://doi.org/10.1155/2020/1043471
Joshi, S. S., Dice, L., & D’Souza, D. H. (2015). Aqueous extracts of Hibiscus sabdariffa calyces decrease hepatitis A virus and human norovirus surrogate titers. Food and Environmental Virology, 7, 366-373. https://doi.org/10.1007/s12560-015-9209-1
Kamalabadi, M., Astani A., & Nemati, F. (2018). Anti-viral effect and mechanisms of carvacrol on Herpes simplex virus type 1. International Journal of Medical Laboratory, 5, 113-122.
Kapoor, R., Sharma, B., & Kanwar, D. S. (2017). Antiviral phytochemicals: an overview. Biochemistry & Physiology, 6, 2. https://doi.org/10.4172/2168-9652.1000220
Karimi, A., Moradi, M.-T., Rabiei, M., & Alidadi, S. (2020). In vitro anti-adenoviral activities of ethanol extracts, fractions, and main phenolic compounds of pomegranate (Punica granatum L.) peel. Antiviral Chemistry and Chemotherapy, 28, 1-6. https://doi.org/10.1177/20202066209165
Kaushik, S., Kaushik, S, Sharma, V., & Yadav, J. P. (2018). Antiviral and therapeutic uses of medicinal plants and their derivatives against dengue viruses. Pharmacognosy Review, 12, 177-185.
Khaerunnisa, S., Kurniawa, H., Avaluddin, R., Suhartati, S., & Soetjipto, S. (2020). Potential inhibitor of Covid-19 main protease (Mpro) from several medicinal plant compounds by molecular docking study. Preprints, 2020. https://doi.org/10.20944/preprints202003.0226.v1
Kim, H. K., Lee, H.-K.,Shin, C.-G. & Huh, H. (1999). HIV integrase inhibitory activity of Agastache rugosa. Archives of Pharmacal Research, 22, 520-523. https://doi.org/10.1007/8F02979163
Lai, W.-L., Chuang, H.-S., Lee, M.-H., Wei, C.-L., Lin, C. F., & Tsai, Y.-C. (2012). Inhibition of Herpes simplex virus type 1 by thymol-related monoterpenoids. Planta Medica, 78, 1636-1638. https://doi.org/10.1055/s-0032-1315208
Lai, Y., Yan, Y., Liao S., Li, Y., Ye., Y., Liu, N., … Xu, P. (2020). 3D?quantitative structure-activity relationship and antiviral effects of curcumin derivatives as potent inhibitors of influenza H1N1 neuraminidase. Archives of Pharmacal Research, 1-14. https://doi.org/10.1007/s12272-020-01230-5
Laila, U., Akram, M., Shariati, M. A., Hashimi, A. M., Akhtar, N., Mahmood, I., … Ahmand, S. (2019). Role of medicinal plants in HIV/AIDS therapy. Clinical and Experimental Pharmacology and Physiology, 46, 1063-1073. https://doi.org/10.1111/1440-1681-13151
Lajter, I., Vasas, A., Béni, Z., Forgo, P., Binder, M., Bochkov, V., … Hohmann, J. (2014). Sesquiterpenes from Neurolaena lobata and their antiproliferative and anti-inflammatory activities. Journal of Natural Products, 77, 576-582. https://doi.org/10.1021/np4000834c
Lasso, G., Mayer, S. V., Winkelmann, E. R., Chu, T., Elliot, O., Patino-Galindo, J. A., … Shapira, S. D. (2019). A structure-informed atlas of human-virus interaction. Cell, 178, 1526-1541. https://doi.org/10.1016/j.cell.2019.08.005
Lee, C.-J., Cheng, C.-H., Li,Y.-H., Liu, C.-Y., & Hsu, C. H. (2013). A Chinese medicine, kuan-sin-yin decoction, improves liver function in hepatitis B virus carriers: A randomized, controlled study. Journal of Alternative and Complementary Medicine, 19, 964-969. https://doi.org/10.1089/acm.2013.0136
Lee, J.-J., Lee, J.-H., Gu, M.-J., Han, J.-H., Cho, W.-K., & Ma, J. Y. (2017). Agastache rugosa Kuntze extract, containing the active component rosmarinic acid, prevents atherosclerosis through up-regulation of the cyclin-dependent kinase inhibitors p21 WAF1/CIP1 and p27 KIP1. Journal of Functional Foods, 30, 30-38. https://doi.org/10.1016/j.jff.2016.12.025
Lin, X., Ammosova, T., Kumari, N., & Nekhai, S. (2017). Protein phosphatase-1-targeted small molecules, iron chelators and curcumin analogs as HIV-1 antivirals. Current Pharmaceutical Design, 23, 4122-4132. https://doi.org/10.2174/138161282366617070412362
Lutsenko, Y., Bylka, W., Matlawska, I., & Darmohray, R. (2010). Hedera helix as a medicinal plant. Herba Polonica, 56, 836
Malakar, S., Sreelatha, L., Dechtawewat, T., Noisakran, S., Yenchitsomanus, P., Hann Chu, J. J., & Limjindaporn, T. (2018). Drug repurposing of quinine as antiviral against dengue virus infection. Virus Research, 255, 171-178. https://doi.org/10.1016/j.virusres.2018.07.018
Manayi, A., Vazirian, M., & Saeidnia, S. (2015); Echinacea purpurea: Pharmacology, phytochemistry and analysis methods. Pharmacognosy Reviews, 9, 63-72. https://doi.org/10.4103/0973-7847.156353
Mani, J. S., Johnson, J. B., Steel J. C., Broszczak, D. A., Nielsen, P. M., Walsh, K. B., & Maiker, M. (2020). Natural product-derived phytochemicals as potential agents against coronaviruses: a review. Virus Research, 284, 197989. https://doi.org/10.1017/j.virusres.2020. 197989
Marroquin, E. A., Blanco, J. A., Granados, S., & Cáceres, A. (1997). Clinical trial of Jatropha curcas sap in the treatment of common warts. Fitoterapia, 68, 160-162.
Matsuse, I. T., Lim, Y. A., Hattori, M., Correa, M., & Gupta, M. P. (1999). A search for anti-viral properties in Panamanian medicinal plants. The effects on HIV and its essential enzymes. Journal of Ethnopharmacology, 64, 15-22. https://doi.org/10.1016/s0378-8741(98)00099-3
Mehrbod, P., Abdalla, M. A., Njoya, E. M., Ahmed, A. S., Fotouhi, F., Farahmand, B., … Fasina, F. (2018). South African medicinal plant extracts active against influenza A virus. BMC Complementary and Alternative Medicine, 18, 112. https://doi.org/10.1186/s12906-018-2184-y
Meneguzzo, F., Ciriminna, R., Zabini, F., & Pagliaro, M. (2020). Hydrodynamic cavitation-based rapid expansion of hesperidin-rich products from waste citrus peel as a potential tool against Covid-19. Preprints, 8, 549. https://doi.org/10.20944/preprint s202004.0152.v1
Meneses, R., Ocazionez, R. E., Martínez, J. R. & Stachenko, E. E. (2009). Inhibitory effect of essential oils obtained from plants grown in Colombia on yellow fever virus replication in vitro. Annals of Clinical Microbiology and Antimicrobials, 8, 8. https://doi.org/10.1186/1476-0711-8-8
Min, B. S., Hattori, M., Lee, H., & Kim, Y. H. (1999). Inhibitory constituents against HIV-1 protease from Agastache rugosa. Archives of Pharmacal Research, 22, 75-77. https://doi.org//10.1007/BF0276440
Min, B. S., Miyashiro, H., & Hattori, M. (2002). Inhibitory effects of quinones on RNase H activity associated with HIV-1 reverse transcriptase. Phytotherapy Research, 16, S37-S62. https://doi.org/10.1002/ptr.808
Mohamat, S. A., Che Mat, N. F., Barkhadle, N. I., Jusoh, T. N. A. M., & Shueb, R. H. (2020) Chikungunya and alternative treatment from natural products: A review. Malaysian Journal of Medicine and Health Sciences, 16, 304-311}
Moradi, M.-T., Karimi, A., Alidadi, S. & Hashemi, L. (2016). In vitro anti-adenovirus activity, antioxidant potential and total phenolic compounds of Melissa officinalis L. (lemon balm) extract. International Journal of Pharmacognosy and Phytochemical Research, 8, 1471-1477.
Moradi, M.-T., Karimi, A., Alidadi, S. & Hashemi, L. (2019a). In vitro anti-herpes simplex activity, antioxidant potential and total phenolic compounds of selected Iranian medicinal plant extracts. Indian Journal of Traditional Knowledge, 17, 255-262.
Moradi, M.-T., Karimi, A., Rafieian-Kopzei, M., Raviei-Faradonbeh, M., & Momtaz, H. (2020). Pomegranate peel extract inhibits internalization and replication of influenza virus: An in vitro study. Avicenna Journal of Phytomedicine, 10, 143-151.
Moradi, M.-T., Karimi, A., Shahrani, M., Hashemi, L., Ghaffari-Goosheh, M-S. (2019b). Anti-influenza virus activity and phenolic contents of Pomegranate (Punica granatum L.). Avicenna Journal of Medical Biotechnology, 11, 285-291.
Moradi, M-T., Karimi, A., Alidadi, S., Saedi-Marglumaleki, M., & Saehian, M. (2016). In vitro anti-adenovirus activity of pomegranate (Punica granatum) peel extract. Advance Herbal Medicine, 2, 1-8. https://doi.org/10.1177/2040206620916571
Mounce, B. C., Cesaro, T., Carrau, L., Vallet, T., & Vignuzzi, M. (2017). Curcumin inhibits Zika and chickungunya virus infection by inhibiting cell binding. Antiviral Research, 152, 148-157. https://doi.org/10.1016/j.antiviral.2017.03.014
Mukhtar, M., Arshad, M., Ahmad, M., Pomerantz, R. J., Wigdahl, B., & Parveen, Z. (2008). Antiviral potentials of medicinal plants. Virus Research, 131, 111-120. https://doi.org/10.1016/j.virusres.2007.09.008
Nabila, N., Suada, N. K., Denis, D., Yohan, B., Adi, A. C., Veterini, A. S., … Rachmawati, H. (2020). Antiviral action of curcumin encapsulated in nanoemulsion against four serotypes of Dengue virus. Pharmaceutical Nanotechnology, 8, 54-62
Naseri, S., Darroudi, M., Aryan, E., Gholoobi, A., Rahimi, H. R., Katevi, K., … Meshkat, Z. (2017). The antiviral effects of curcumin nanomicelles on the attachment and entry of hepatitis C virus. Iranian Journal of Virology, 11, 29-35.
Nasr-Eldin, M. A., Abdelhamid, A. G., & Baraka, D. M. (2017) Antibiofilm and antiviral potential of leaf extracts from Moringa oleifera and rosemary (Rosmarinus officinalis Lam.). Egyptian Journal of Microbiology, 52, 129-139. https://doi.org/10.21608/ejem.2017.1439.1027
Ndhala, A. R., Amoo, S. O., Naube, B., Moyo, M., Nair, J. J., & van Staden, J, (2013). Antibacterial, antifungal, and antiviral activities of African medicinal plants (pp 621-659). En: V. Kuete (Ed) - Medicinal Plants Research in Africa. Amsterdam: Elsevier. http://dx.doi.org/10.1016/B978-0-12-405927-6.00016-3
Nworu, C. S., Okoye, E. L., Ezeifeka, G. O., & Esimone, C. O. (2013). Extracts of Moringa oleifera Lam. Showing inhibitory activity against early steps in the infectivity of HIV-1 lentiviral particles in a viral vector-based screening. African Journal of Biotechnology, 12, 4866-4873. https://doi.org/10.5897/AJB2013.12343
Ocazionez, R. E., Meneses, R., Torres, F. A. & Stashenko, E. (2010). Virucidal activity of Colombian Lippia essential oils on dengue virus replication in vitro. Memorias Instituto Oswaldo Cruz, 105, 304-309. https://10.1590/s0074-027620100003000010
Ortega, J. T., Estrada, O., Serrano, M. L., Contreras, W., Orsini, G., Pujol, F. H., & Rangel, H. R. (2017). Glycosylated flavonoids from Psidium guineense as major inhibitors of HIV-1 replication in vitro. Natural Product Communication, 12, 1049-1052. https://doi.org/10.1177/1934578X1701200712
Padilla, M. A., Simoni, I. C., Hoe, V. M. H., Fernandes, M. J. B., Arns, C. W., Brito, J. R., & Lago, J. H. G. (2018). Antiviral activity of Brazilian Cerrado plant extracts against animal and human herpesvirus. Journal of Medicinal Plants Research, 12, 106-115 https://doi.org/10.5897/JMPR2018.6567
Palshetkar, A., Pathare, N., Jadhav, N., Pawar, M., Wadhwani, A., Julkami, S., & Singh, K. K. (2020). In vitro anti-HIV activity of some medicinal plant extracts. BMC Complementary Medicine and Therapies, 20, 69. https://doi.org/10.1186/s12906-020-2816-x
Parsania, M., Rezaee, M.-B., Monavari, S.-H., Jaimand, K., Mousavi-Jazayeri, S.-M., Razazian, M., & Nadjarha, M.-H. (2017). Antiviral screening of four plant extracts against acyclovir resistant herpes simplex tipe-1. Pakistan Journal of Pharmaceutical Sciences, 10, 1407-1411
Phuong Thuy, B. T., Ai My, T. T., Than Hai, N. T., Hieu, L. T., Hoa, T. T., Phuong Loan, H. T., … Ai Nhung, N. T. (2020). Investigation into SARS-CoV-2 resistance of compounds in garlic essential oil. ACS Omega, 5, 8312-8320. https://dx.doi.org/10.1021/acsomega.0c00772
Pilau, M. R., Alves, S. H., Weiblen, R., Arenhart, S., Cueto, A. P., & Lovato, L. T. (2011). Antiviral activity of the Lippia graveolens (Mexican oregano) essential oil and its compound carvacrol against human and animal viruses. Brazilian Journal of Microbiology, 42, 1616-1624.
Prajapat, M., Sarma, P., Shekhar, N., Avti, P., Sinha, S., Kaur, M, … Medhi, B. (2020). Drug targets for corona virus: a systemic review. Indian Journal of Pharmacology, 52, 56-65. https://doi.org/10.4103/ijp.IJP_115_20
Prakash, C. V. S., & Prakash, I. (2011). Bioactive chemical constituents from pomegranate (Punica granatum) juice, seed and peel – A review. International Journal of Research in Chemistry and Environment, 1, 1-18
Priyadarsini, K. L. (2014). The chemistry of curcumin: From extraction to therapeutic agent. Molecules, 19, 20091-20115. https;//doi.org/10.3390/molecules191220091
Pushpa, R., Nishant, R., Navin, K., & Pankaj, G. (2013). Antiviral potential of medicinal plants: An overview. International Research Journal of Pharmacy, 4, 7-16. https://doi.org/10.7897/2230-8407.04603
Pyankov, O. V., Usachev, E. V., Pyankova, O., & Agranovski, I. E. (2012). Inactivation of airborne influenza virus by tea tree and Eucalyptus oils. Aerosol Science and Technology, 46, 1295-1302. https://doi.org/10.1080/02786826.2012.708948
Rathore, S., Mukim, M., Sharma, P., Devi, S., Nagar, J. C., & Khalid, M. (2020). Curcumin: A review for health benefits. International Journalof Research and Review, 7, 273-290.
Raus, K., Pleschka, S., Klein, P., Schoop, R., & Fisher, P. (2015). Effect of an Echinacea-rich hot drink versus oseltamivir in influenza treatment: A randomized, double-blind, double-dumm6y, multicenter, noninferiority clinical trial. Current Therapeutic Research, 77, 66-72. https:/doi.org/10.1016/j.curtheres.2015.04.001
Richling, J., Schnitzler, P., Suschke, U., & Saller, R. (2009). Essential oils of aromatic plants with antibacterial, antifungal, antiviral, and cytotoxic properties – an overview. Forschended Komplementärmedizin, 16, 79-90. https://doi.org/10.1159/000207196
Romeilah, R. M., Fayed, S. A., & Mahmoud, G. I. (2010). Chemical composition, antiviral and antioxidant activities of seven essential oils. Journal of Applied Sciences Research, 6, 50-62.
Rosmalena, R., Elya, B., Dewi, B. E., Fithriyah, F., Desti, H., Angelina, M., … Seto, D. (2019). The antiviral effect of Indonesian medicinal plant extracts against dengue virus in vitro and in silico. Pathogens, 8, 85. https://doi.org/10.3390/pathogens8020085
Saif, N. A., Othman, B. A., Mohamed, A. F., & El-Dougdoug, Kh. A. (2019). Polyphenolic wealthy Moringa leaves extracts as anti-Coxsackie B virus (Cox-BV). Aujas, 27, 207-217. https:/doi.org/10.21608/ajs.2019.43350
Sanders, J. M., Monogyue, M. L., Jodlowsky, T. Z., & Cutrell, J. B. (2020). Pharmacologic treatment for coronavirus disease 2019 (COVID-19). Journal of the American Medical Association, 323, 1824-2836. Jttps://doi.org/10.1001/jama.2020.6019
Santana, M. T. P., Gomes, L. L., Batista, F. B. R., dos Santos, T. A., Matias, L. B., Fernandes de Oiveira, H. M., … de Oliveira Filho, A. A. (2018). Atividade antiviral do monoterpeno timol: um estudo in silico. Journal of Medicine and Health Promotion, 3, 994-999.
Saptawati, L., Febrinasari, R. P., Yudhani, R. D., Hudiyono, Faza, A. G., Luthfiani, S., … Dewi, B. E. (2017). In vitro study of eight Indonesian plants extracts as anti Dengue virus. Health Science Journal of Indonesia, 8, 12-18
Schnitzler, P. (2019). Essential oils for the treatment of herpes simplex virus infections. Chemotherapy, 64, 1-7. https://doi.org/10.1159/000501062
Scoop, R., Klein, P., Suter, A., & Johnston, S. L. (2006). Echinacea in the prevention of induced rhinovirus colds: A meta-analysis. Clinical Therapeutics, 28, 174-183. https://doi.org/10.1016/j.clinthera.2006.02.001
Seo, D. J., Lee, M., Jeon, S. B., Park, H., Jeong, S., Lee, B.-H., & Choi, C. (2019). Antiviral activity of herbal extracts against the hepatitis A virus. Food Control, 72, 9-13. https://doi.org/10.1016/j.foodcont.2016.07.028
Sharif-Rad, J., Sureda, A., Tenore, G. C., Daglia, M., Sharif-Rad, M., Valussi, M., …Iriti, M. (2019) Biological activities of essential oils: from plants chemoecology to traditional healing systems. Molecules, 22, 70. https://doi.org/10.3390/molecules22010070
Sharma, A. D., & Kaur, I. (2020a) Eucalyptol (1,8 cineol) from eucalyptus essential oil a potentuial inhibitor of COVID-19 corona virus infection by molecular docking studies. Preprints. https://doi.org/10.20944/preprints202003.0455.v1
Sharma, A. D., & Kaur, I. (2020b). Jensenone from eucalyptus essential oil as a potential inhibitor of COVID 19 corona virus infection. Research & Reviews in Biotechnology & Biosciences, 7, 59-66.
Shen, K., Yang, Y., Wang, T., Zhao, D., Jiang, Yi., Jin, R., … Gao, L. (2020). Diagnosis, treatment, and prevention of 2019 novel coronavirus infection in children: experts’ consensus statement. World Journal of Pediatrics, 7, 1-9. https://doi.org/10.1007/s12519-020-00343-7
Shruthi, S., Roshan, A., Timilsina, S. S., & Sunita, S. (2013). A review on the medicinal plant Psidium guajava Linn. (Myrtaceae). Journal of Drug Delivery & Therapeutics, 3, 162-168.
Signer, J., Jondottir, H. R., Albrich, W. C., Strasser, M., Züst, R., Ryter, S. et al. (2020). In vitro antiviral activity of Echinaforce®, an Echinacea purpurea preparation, against common col coronavirus 229E and highly pathogenic MERS-CoV and SARS-CoV. Virology Journal, https://doi.org/10.21203.rs.2.24724/v1
Silva-Mares, D., Rivas-Galindo, V. M., Salazar-Aranda, R., Pérez-Lopez, L A., Waksman de Torres, N., Pérez-Meseguer, J., & Torres-Lopez, E. (2018). Screening of north-east Mexico medicinal plants with activities against herpes simplex virus and human cancer cell line. Natural Product Research, 33, 1531-1534. https://10.1080/14786419.2017.1423300
Song, J.-H., Yeo, S.-G., Hong, E.-Y., Lee, B.-R., Kim, J.-W., Kim, J.-H., … Ko, H.-J. (2014). Antiviral activity of hederasaponin B from Hedera helix against enterovirus 71 subgenotypes C3 and C4a. Biomolecules & Therapeutics, 22, 41-46. https://doi.org/10.4062/biomolther.2013.108
Sriwilaijaroen, N., Fukumoto, S., Kumagai, K., Hiramatsu. H., Odagiri, T., Tashiro, M., & Suzuki, Y. (2012). Antiviral effect of Psidium guajava Linn. (guava) tea on the growth of clinical isolated H1N1 viruses: Its role in viral hemagglutination and neuraminidase inhibition. Antiviral Research, 94, 139-146. https://doi.org/10.1016/j.antiviral.2014.02.013
Sunday, O. A., Munir, A. B., Akeeb, O. O., Bolanle, A. A., & Badaru. S. O. (2010). Antiviral effect of Hibiscus sabdariffa and Celosia argentea on measles virus. African Journal of Microbiology Research, 4, 293-296.
?wiader, K., Startek, K., & Wijaya, C. H. (2019). The therapeutic properties of lemon balm (Melissa officinalis L.): Reviewing novel findings and medical indications. Journal of Applied Botany and Food Quality, 93, 327-335. https://doi.org/10.5073/JABFQ.2019.092.044
Takeda, Y., Okuyama, Y., Nakano, H., Yaoita, Y., Machida, K., Ogawa, H., & Imai, K. (2019). Antiviral activities of Hibiscus sabdariffa L. tea extract against human influenza A virus rely largely on acidic pH but partially on a low?pH?independent mechanism. Food and Environmental Virology, 12, 9-19. https://doi.org/10.1007/s12560-019-09408-x
Thabti, I., Albert, Q., Philippot, S., Dupire, F., Westerhuis, B., Fontanay, R., … Varbanov, M. (2020). Advances on antiviral activity of Morus spp. plant extracts: Human coronavirus and virus-related respiratory tract infections in the spotlight. Molecules, 25, 1876. https;//doi.org/10.3390/molecules25081876
Trujillo-Correa, A. I., Quinteros-Gil, D. C., Diaz-Castillo, F., Quiñones, W., Robledo, S. M., & Martínez-Gutierrez, M. (2019). In vitro and in silico anti-dengue activity of compounds obtained from Psidium guajava through bioprospecting. BMC Complementary and Alternative Medicine, 19, 298. https://doi.orh/10.1186/s12906-019-2695-1
Umbara, F., Mariya, S., Saepuloh, U., Pamungkas, J., & Suparto, I. H. (2016). Antiretroviral effect of combination of methanol extract from leaf or Psidium guajava and Andrographis paniculate. International Journal of Agriculture and Bioscience, 5, 15-18.
Upadhyay, R. K. (2020). Thermal-Aroma-Organic-Carbon-Fusion-Therapy: An open air conventional method for clearance of nasal air passage, trachea, lungs and immunity boosting against influenza virus. International Journal of Zoological Investigations, 2020; 6, 71-93. https://doi.org/10.33745/ijzi.2020.v06i01.007
Vellingiri, B., Jayaramayya, K., Iyer, M., Narayanasamy, A., Govindasamy, V., Giridharan, B., … Subramaniam, M. D. (2020). Covid-19: A promising cure for the global panic. Science and the Total Environment, 724, 138277. https://doi.org/10.1016/j.scitotenv.2020.138277
Vista, F. E. S., Delmacio, L. M. M., Corales, L. G. M., Salem, G. M., Galula, J. U., & Chao, D.-Y. (2020). Antiviral effect of crude aqueous extracts from the Philippine medicinal plants against Zika virus. Acta Medica Philippina, 54, 195-202.
Vitale, D., Bagri, P., Wessels, J. M., Arora, M., Ganugula, R., Parikh, A., … Kaushic, C. (2020). Curcumin can decrease tissue inflammation and the severity of HSV-2 infection in the female reproductive mucosa. International Journal of Molecular Sciences, 21, 337. https://doi.org/10.330/ijms21010337
Wahyuni, T., S., Tumewu, L., Permanasari, A. A., Apriani, E., Adianti, M., Rahman, A., … Hotta, H. (2013). Antiviral activities of Indonesia medicinal plants in the East Java region against hepatitis C virus. Virology Journal, 10, 259. https://doi.org/10.1186/1743-422X-10-259
Walshe-Roussel, B., Choueiri, C., Saleem, A., Asim, M., Caal, F., Cal, V., … Arnason, J., T. (2013). Potent ant-inflammatory activity of sesquiterpene lactones from Neurolaena lobata (L.) R. Br. ex Cass., a Q’eqchi’ Maya traditional medicine. Phytomedicine, 92, 122-127. https://10.1016/j.phytochem.2013.05.004
Yang, Y., Islam, M. S. Wang, J., Li, Y., & Cheng, X. (2020). Traditional Chinese Medicine in the treatment of patients infected with 2019-New Coronavirus (SARS-CoV-2): A review and perspective. International Journal of Biological Sciences, 16, 1708-1717. https://doi.org/10.7150/ijbs.45538
Yonesi, M., & Rezazadeh, A. (2020). Plants as a prospective source of natural anti-viral compounds and oral vaccines against COVID-19. Preprints, 2020, April. https://doi.org/10.20944/preprints202004.032.v1
Ziani, B. E C., Rached, W., Bachari, K., Alves, J. M., Calhelha, R. C., Barros, L., & Ferreira, L. C. F. R. (2019). Detailed chemical composition and function properties of Ammodaucus leucotrichus Cross. & Dur. and Moringa oleifera Lamarck. Journal of Functional Foods, 53, 237-247. https://doi.org/10.1016/j.jff.2018.12.023
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Armando Cáceres, Sebastián Cáceres
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
El autor que publique en esta revista acepta las siguientes condiciones:
- El autor otorga a la Dirección General de Investigación el derecho de editar, reproducir, publicar y difundir el manuscrito en forma impresa o electrónica en la revista Ciencia, Tecnología y Salud.
- La Direción General de Investigación otorgará a la obra una licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional