Optimization of the biosynthesis of polyhydroxyalkanoates by native Guatemalan bacteria using whey as a substrate

Authors

DOI:

https://doi.org/10.36829/63CTS.v11i1.1598

Keywords:

Biopolymers, biodegradable plastics, waste reuse

Abstract

Polyhydroxyalkanoates (PHA) are biodegradable polymers that could replace petroleum-based plastics due to their properties, such as biodegradability, biocompatibility, safety, and thermoplasticity. Despite their benefits, the large-scale utilization of PHA is limited by deficiencies in the production processes, especially regarding the costs associated with raw materials. It has been estimated that improvements in the PHA production process through the utilization of waste residues such as whey or agro-industrial waste can significantly reduce production costs by up to 50%. In this research, the biotechnological potential of native bacteria for PHA production using whey as a substrate was evaluated. The chloroform-hypochlorite methodology was employed for biopolymer extraction, and the amount of PHA was determined by spectrophotometry. It was found that out of the 40 evaluated strains, 28 were capable of utilizing whey as a substrate. Additionally, it was determined that the optimal fermentation conditions were a temperature of 37 °C, pH of 7, and 150 RPM. The fermentation conditions tested in this research could be applied on a larger scale for PHA production, primarily due to the similarity in biopolymer production yield obtained compared to chemically defined media and the cost reduction that the utilization of dairy industry by-products would provide.

Downloads

References

Bran, M., Morales, O., & Figueroa, R. (2021). Producción de plásticos biodegradables en Guatemala (fase II): bioplásticos de bacterias halófilas nativas a partir de residuos agrícolas. Programa Universitario de Investigación en Recursos Naturales y Ambiente, Proyecto AP21-2021. Universidad de San Carlos de Guatemala. Dirección General de Investigación, Guatemala.

Chincholkar, S. B., & Sayyed, R. Z. (2004). Production of poly-β-hydroxy butyrate from Alcaligenes faecalis. Indian Journal of Microbiology, 44(4), 269-272.

Darshan, M., & Nishith, D. (2010). Screening of edible oil-contaminated soil for polyhydroxyalkanoates producing bacterial strains. Journal of Life Sciences, 4(4), 37-42.

Gunaratne, L. M. W. K., Shanks, R. A., & Amarasinghe, G. (2004). Thermal history effects on crystallisation and melting of poly (3-hydroxybutyrate). Thermochimica Acta, 423(1-2), 127-135. https://doi.org/10.1016/j.tca.2004.05.003 DOI: https://doi.org/10.1016/j.tca.2004.05.003

Guzmán, C., Hurtado, A., Carreño, C., & Casos, I. (2017). Producción de polihidroxialcanoatos por bacterias halófilas nativas utilizando almidón de cáscaras de Solanum tuberosum L. Scientia Agropecuaria, 8(2), 109-118. https://doi.org/10.1016/j.tca.2004.05.003 DOI: https://doi.org/10.17268/sci.agropecu.2017.02.03

Khanafari, A., Sepahei, A. A., & Mogharab, M. (2006). Production and recovery of poly-β-hydroxybutyrate from whey degradation by Azotobacter. Journal of Environmental Health Science & Engineering, 3(3), 193-198.

Kalia, V. C., Patel, S. K. S., Shanmugam, R., & Lee, J. K. (2021). Polyhydroxyalkanoates: trends and advances toward biotechnological applications. Bioresource Technology, 124737. https://doi.org/10.1016/j.biortech.2021.124737 DOI: https://doi.org/10.1016/j.biortech.2021.124737

Kesik, M., Blagodatsky, S., Papen, H., & Butterbach-Bahl, K. (2006). Effect of pH, temperature and substrate on N₂O, NO and CO₂ production by Alcaligenes faecalis. Journal of Applied Microbiology, 101(3), 655-667. https://doi.org/10.1111/j.1365-2672.2006.02927.x DOI: https://doi.org/10.1111/j.1365-2672.2006.02927.x

Koller, M., Bona, R., Chiellini, E., Fernandes, E. G., Horvat, P., Kutschera, C., ... & Braunegg, G. (2008). Polyhydroxyalkanoate production from whey by Pseudomonas hydrogenovora. Bioresource Technology, 99(11), 4854-4863. DOI: https://doi.org/10.1016/j.biortech.2007.09.049

Kourmentza, C., Costa, J., Azevedo, Z., Servin, C., Grandfils, C., De Freitas, V., & Reis, M. A. M. (2018). Burkholderia thailandensis as a microbial cell factory for the bioconversion of used cooking oil to polyhydroxyalkanoates and rhamnolipids. Bioresource Technology, 247, 829-837. https://doi.org/10.1016/j.biortech.2017.09.138 DOI: https://doi.org/10.1016/j.biortech.2017.09.138

Marjadi, D., & Dharaiya, N. (2014). Recovery and characterization of poly(3-hydroxybutyric acid) synthesized in Staphylococcus epidermidis. African Journal of Environmental Science and Technology, 8(6), 319-329. https://doi.org/10.5897/AJEST2014.1645 DOI: https://doi.org/10.5897/AJEST2014.1645

Masood, F., Yasin, T., & Hameed, A. (2015). Polyhydroxyalkanoates–what are the uses? Current challenges and perspectives. Critical Reviews in Biotechnology, 35(4), 514-521. https://doi.org/10.3109/07388551.2014.913548 DOI: https://doi.org/10.3109/07388551.2014.913548

Mohanrasu, K., Rao, R. G. R., Dinesh, G. H., Zhang, K., Prakash, G. S., Song, D. P., ... & Arun, A. (2020). Optimization of media components and culture conditions for polyhydroxyalkanoates production by Bacillus megaterium. Fuel, 271, 117522. DOI: https://doi.org/10.1016/j.fuel.2020.117522

Obruca, S., Marova, I., Melusova, S., & Mravcova, L. (2011). Production of polyhydroxyalkanoates from cheese whey employing Bacillus megaterium CCM 2037. Annals of Microbiology, 61, 947-953. https://doi.org/10.1007/s13213-011-0218- DOI: https://doi.org/10.1007/s13213-011-0218-5

Pagliano, G., Galletti, P., Samorì, C., Zaghini, A., & Torri, C. (2021). Recovery of polyhydroxyalkanoates from single and mixed microbial cultures: a review. Frontiers in Bioengineering and Biotechnology, 9, 54. https://doi.org/10.3389/fbioe.2021.624021 DOI: https://doi.org/10.3389/fbioe.2021.624021

Pantazaki, A. A., Papaneophytou, C. P., Pritsa, A. G., Liakopoulou-Kyriakides, M., & Kyriakidis, D. A. (2009). Production of polyhydroxyalkanoates from whey by Thermus thermophilus HB8. Process Biochemistry, 44(8), 847-853. https://doi.org/10.1016/j.procbio.2009.04.002 DOI: https://doi.org/10.1016/j.procbio.2009.04.002

Pérez, R., Casal, J., Muñoz, R., & Lebrero, R. (2019). Polyhydroxyalkanoates production from methane emissions in Sphagnum mosses: Assessing the effect of temperature and phosphorus limitation. Science of The Total Environment, 688, 684-690. https://doi.org/10.1016/j.scitotenv.2019.06.296 DOI: https://doi.org/10.1016/j.scitotenv.2019.06.296

Rathika, R., Janaki, V., Shanthi, K., & Kamala-Kannan, S. (2019). Bioconversion of agro-industrial effluents for polyhydroxyalkanoates production using Bacillus subtilis RS1. International Journal of Environmental Science and Technology, 16, 5725-5734. DOI: https://doi.org/10.1007/s13762-018-2155-3

Sathya, A. B., Sivasubramanian, V., Santhiagu, A., Sebastian, C., & Sivashankar, R. (2018). Production of polyhydroxyalkanoates from renewable sources using bacteria. Journal of Polymers and the Environment, 26(9), 3995-4012. https://doi.org/10.1007/s10924-018-1259-7 DOI: https://doi.org/10.1007/s10924-018-1259-7

Wen, Q., Chen, Z., Wang, C., & Ren, N. (2012). Bulking sludge for PHA production: Energy saving and comparative storage capacity with well-settled sludge. Journal of Environmental Sciences, 24(10), 1744-1752. https://doi.org/10.1016/S1001-0742(11)61005-X DOI: https://doi.org/10.1016/S1001-0742(11)61005-X

Yasin, A. R., & Al-Mayaly, I. K. (2021). Study of the fermentation conditions of the Bacillus cereus strain ARY73 to produce polyhydroxyalkanoate (PHA) from glucose. Journal of Ecological Engineering, 22(8), 217-219. DOI: https://doi.org/10.12911/22998993/140326

Zhang, Y., Kang, S., Allen, S., Allen, D., Gao, T., & Sillanpää, M. (2020). Atmospheric microplastics: A review on current status and perspectives. Earth-Science Reviews, 203, 103118. https://doi.org/10.1016/j.earscirev.2020.103118 DOI: https://doi.org/10.1016/j.earscirev.2020.103118

Published

2024-06-29

How to Cite

Figueroa, R., Morales, O., Álvarez, G., & Bran, M. (2024). Optimization of the biosynthesis of polyhydroxyalkanoates by native Guatemalan bacteria using whey as a substrate. Ciencia, Tecnología Y Salud, 11(1), 35–43. https://doi.org/10.36829/63CTS.v11i1.1598

Issue

Section

Artículos científicos

Most read articles by the same author(s)