Influence of CYP3A4 and CYP3A5 polymorphism of the pharmacokinetics of tacrolimus in renal transplant recipients. Narrative review
DOI:
https://doi.org/10.36829/63CTS.v8i2.1040Keywords:
Kidney transplant, Pharmacogenetics, Tacrolimus, Polymorphism, CYP3A4/5Abstract
The use of the calcineurin inhibitor tacrolimus as immunosuppressive therapy, has become widespread worldwide, improving the graft’s survival rate and the quality of life of the transplanted patient. With access to pharmacogenetic studies, transplant groups worldwide have been motivated to conduct genetic studies to interpret the influence of polymorphisms of genes such as mTOR, PPP3CA, FKBP1A, FKBP2, and FOXP3. However the most studied in the transplanted population to optimize the dose of tacrolimus and cyclosporine are those of cytochrome p450, CYP3A4 and CYP3A5. The objective of this narrative review is to examine recent publications studying the relationship between CYP3A4/5 polymorphism, and tacrolimus metabolism in renal transplant patients. Literature extracted from the NCBI PubMed site and PharmGKB.org, from the past five years, which investigated the influence of CYP3A4/5 polymorphism on tacrolimus metabolism in renal transplants had been reviewed. Genetic variations of CYP3A4/5 were identified in transplant patients treated with tacrolimus that will allow transplant physicians to dose the immunosuppressant accurately. The use of pharmacogenetic analyses makes it possible to determine the genetic polymorphisms of CYP3A4/5, and therefore the decision-making customized at the starting and maintenance dose of the tacrolimus immunosuppressant to achieve optimal levels and thereby reduce the risk of rejection, immunosuppression-associated infections, and drug toxicity.
Downloads
References
Ang, G. Y., Yu, C. Y., Johari James, R., Ahmad, A., Abdul Rahman, T., Mohd Nor, F., Shaari, S. A., Ismail, A. I., Teh, L. K., & Salleh, M. Z. (2018). A study on the genetic polymorphisms of CYP3A5 among the Orang Asli in Malaysia using a next generation sequencing platform. Annals of Human Biology, 45(2), 166-169. https://doi.org/10.1080/03014460.2018.1440004
Asempa, T. E., Rebellato, L. M., Hudson, S., Briley, K., & Maldonado, A. Q. (2018). Impact of CYP3A5 genomic variances on clinical outcomes among African American kidney transplant recipients. Clinical Transplantation, 32(1). https://doi.org/10.1111/ctr.13162
Bartlett, F. E., Carthon, C. E., Hagopian, J. C., Horwedel, T. A., January, S. E., & Malone, A. (2019). Tacrolimus concentration-to-dose ratios in kidney transplant recipients and relationship to clinical outcomes. Pharmacotherapy, 39(8), 827-836. https://doi.org/10.1002/phar.2300
Bentata, Y. (2020). Tacrolimus: 20 years of use in adult kidney transplantation. What we should know about its nephrotoxicity. Artificial Organs, 44(2), 140-152. https://doi.org/10.1111/aor.13551
Butler-Dawson, J., Krisher, L., Asensio, C., Cruz, A., Tenney, L., Weitzenkamp, D., Dally, M., Asturias, E. J., & Newman, L. S. (2018). Risk factors for declines in kidney function in sugarcane workers in Guatemala. Journal of Occupational and Environmental Medicine, 60(6), 548-558. https://doi.org/10.1097/JOM.0000000000001284
Campagne, O., Mager, D. E., Brazeau, D., Venuto, R. C., & Tornatore, K. M. (2018). Tacrolimus population pharmacokinetics and multiple CYP3A5 genotypes in black and white renal transplant recipients. Journal of Clinical Pharmacology, 58(9), 1184-1195. https://doi.org/10.1002/jcph.1118
Campos-Salazar, A. B., Dalla Vecchia Genvigir, F., Felipe, C. R., Tedesco-Silva, H., Medina-Pestana, J., Monteiro, G. V., De Gouveia Basso, R., Cerda, A., Hirata, M. H., & Hirata, R. D. C. (2018). Polymorphisms in mTOR and calcineurin signaling pathways are associated with long-term clinical outcomes in kidney transplant recipients. Frontiers in Pharmacology, 9, Article 1296. https://doi.org/10.3389/fphar.2018.01296
Chapman, E., Haby, M. M., Illanes, E., Sanchez-Viamonte, J., Elias, V., & Reveiz, L. (2019). Risk factors for chronic kidney disease of non-traditional causes: A systematic review. Revista Panamericana de Salud Pública, 43, Article e35. https://doi.org/10.26633/rpsp.2019.35
Chen, L., & Prasad, G. V. R. (2018). CYP3A5 polymorphisms in renal transplant recipients: Influence on tacrolimus treatment. Pharmacogenomics and Personalized Medicine, 11, 23-33. https://doi.org/10.2147/PGPM.S107710
Chen, T. K., Knicely, D. H., & Grams, M. E. (2019). Chronic kidney disease diagnosis and management: A review. Journal of the American Medical Association, 322(13), 1294-1304. https://doi.org/10.1001/jama.2019.14745
Dally, M., Butler-Dawson, J., Krisher, L., Monaghan, A., Weitzenkamp, D., Sorensen, C., Johnson, R. J., Carlton, E. J., Asensio, C., Tenney, L., & Newman, L. S. (2018). The impact of heat and impaired kidney function on productivity of Guatemalan sugarcane workers. PLoS ONE, 13(10), Article e0205181. https://doi.org/10.1371/journal.pone.0205181
Damon, C., Luck, M., Toullec, L., Etienne, I., Buchler, M., Hurault de Ligny, B., Choukroun, G., Thierry, A., Vigneau, C., Moulin, B., Heng, A.-E., Subra, J.-F., Legendre, C., Monnot, A., Yartseva, A., Bateson, M., Laurent-Puig, P., Anglicheau, D., Beaune, P., … Pallet, N. (2017). Predictive modeling of tacrolimus dose requirement based on high-throughput genetic screening. American Journal of Transplantation, 17(4), 1008-1019. https://doi.org/10.1111/ajt.14040
Deininger, K. M., Vu, A., Page, R. L., Ambardekar, A. V., Lindenfeld, J. A., & Aquilante, C. L. (2016). CYP3A pharmacogenetics and tacrolimus disposition in adult heart transplant recipients. Clinical Transplantation, 30(9), 1074-1081. https://doi.org/10.1111/ctr.12790
Elens, L., & Haufroid, V. (2017). Genotype-based tacrolimus dosing guidelines: With or without CYP3A4∗22? Pharmacogenomics, 18(16), 1473-1480. https://doi.org/ 10.2217/2017-0131
Flagg, A. J. (2018). Chronic renal therapy. Nursing Clinics of North America, 53(4), 511-519. https://doi.org/10.1016/j.cnur.2018.07.002
Flood, D., Wilcox, K., Ferro, A. A., Mendoza Montano, C., Barnoya, J., Garcia, P., Lou-Meda, R., Rohloff, P., & Chary, A. (2020). Challenges in the provision of kidney care at the largest public nephrology center in Guatemala: A qualitative study with health professionals. BMC Nephrology, 21(71). https://doi.org/10.1186/s12882-020-01732-w
Genvigir, F. D. V., Salgado, P. C., Felipe, C. R., Luo, E. Y. F., Alves, C., Cerda, A., Tedesco-Silva, H., Medina-Pestana, J. O., Oliveira, N., Rodrigues, A. C., Doi, S. Q., Hirata, M. H., & Hirata, R. D. C. (2016). Influence of the CYP3A4/5 genetic score and ABCB1 polymorphisms on tacrolimus exposure and renal function in Brazilian kidney transplant patients. Pharmacogenetics and Genomics, 26(10), 462-472. https://doi.org/10.1097/FPC.0000000000000237
Glassock, R. J., Warnock, D. G., & Delanaye, P. (2017). The global burden of chronic kidney disease: Estimates, variability and pitfalls. Nature Reviews Nephrology, 13(2), 104-114. https://doi.org/10.1038/nrneph.2016.163
Goldmannova, D., Karasek, D., Krystynik, O., & Zadrazil, J. (2016). New-onset diabetes mellitus after renal transplantation. Biomedical Papers, 160(2), 195-200. https://doi.org/10.5507/bp.2016.005
Hill, N. R., Fatoba, S. T., Oke, J. L., Hirst, J. A., O'Callaghan, C. A., Lasserson, D. S., & Hobbs, F. D. (2016). Global prevalence of chronic kidney disease - A systematic review and meta-analysis. PloS ONE, 11(7), Article e0158765. https://doi.org/10.1371/journal.pone.0158765
Hu, R., Barratt, D. T., Coller, J. K., Sallustio, B. C., & Somogyi, A. A. (2018). CYP3A5*3 and ABCB1 61A>G significantly influence dose-adjusted trough blood tacrolimus concentrations in the first three months post-kidney transplantation. Basic and Clinical Pharmacology and Toxicology, 123(3), 320-326. https://doi.org/10.1111/bcpt.13016.
Htun, Y. Y., Swe, H. K., & Saw, T. M. (2018). CYP3A5*3 Genetic polymorphism and tacrolimus concentration in Myanmar renal transplant patients. Transplantation Proceedings, 50, 1034-1040. https://doi.org/10.1016/j.transproceed.2018.02.032
in’t Veld, A. E., Grievink, H. W., Saghari, M., Stuurman, F. E., de Kam, M. L., de Vries, A. P. J., de, Winter, B. C. M. de, Burggraaf, J., Cohen, A. F., & Moerland, M. (2019). Immunomonitoring of tacrolimus in healthy volunteers: The first step from PK- to PD-based therapeutic drug monitoring? International Journal of Molecular Sciences, 20(19), 1-13. https://doi.org/10.3390/ijms20194710
Jarrar, Y. B., & Lee, S. J. (2019). Molecular functionality of cytochrome P450 4 (CYP4) genetic polymorphisms and their clinical implications. International Journal of Molecular Sciences, 20(17) 4274. https://doi.org/10.3390/ijms20174274
Jasiak, N. M., & Park, J. M. (2016). Immunosuppression in solid-organ transplantation essentials and practical tips. Critical Care Nursing Quarterly, 39(3), 227-240. https://doi.org/10.1097/CNQ.0000000000000117
Jennings, W. C., Lou-Meda, R., Mushtaq, N., Mallios, A., Méndez-Soveranis, S., Sosa Tejada, R. E., Lucas, J. F., & Gradman, W. S. (2019). Creating arteriovenous fistulas for children in Guatemala. Journal of Vascular Surgery, 70(5), 1635-1641. https://doi.org/10.1016/j.jvs.2019.02.022
Kalt, D. A. (2017). Tacrolimus: A review of laboratory detection methods and indications for use. Laboratory Medicine, 48(4), Article e62-e65. https://doi.org/10.1093/labmed/lmx056
Kotowski, M. J., Bogacz, A., Bartkowiak-Wieczorek, J., Tejchman, K., Dziewanowski, K., Ostrowski, M., Czerny, B., Grześkowiak, E., Machaliński, B., & Sieńko, J. (2019). Effect of multidrug-resistant 1 (MDR1) and CYP3A4*1B polymorphisms on cyclosporine-based immunosuppressive therapy in renal transplant patients. Annals of Transplantation, 24, 108-114.https://doi.org/10.12659/aot.914683
Kuypers, D. R. (2018). What do we know about tacrolimus pharmacogenetics in transplant recipients? Pharmacogenomics, 19(7), 593-597. https://doi.org/10.2217/2018-0035
Ladda, M. A., & Goralski, K. B. (2016). The effects of CKD on cytochrome P450-mediated drug metabolism. Advances in Chronic Kidney Disease, 23(2), 67-75. https://doi.org/10.1053/j.ackd.2015.10.002
Li, M., Xu, M., Liu, W., & Gao, X. (2018). Effect of CYP3 A4, CYP3 A5 and ABCB1 gene polymorphisms on the clinical efficacy of tacrolimus in the treatment of nephrotic syndrome. BMC Pharmacology and Toxicology, 19(1), 14. https://doi.org/10.1186/s40360-018-0202-9
Lim, M. A., Kohli, J., & Bloom, R. D. (2017). Immunosuppression for kidney transplantation: Where are we now and where are we going? Transplantation Reviews, 31(1), 10-17. https://doi.org/10.1016/j.trre.2016.10.006
Lloberas, N., Elens, L., Llaudó, I., Padullés, A., Van Gelder, T., Hesselink, D. A., Colom, H., Andreu, F., Torras, J., Bestard, O., Cruzado, J. M., Gil-Vernet, S., Van Schaik, R., & Grinyó, J. M. (2017). The combination of CYP3A4∗22 and CYP3A5∗3 single-nucleotide polymorphisms determine tacrolimus dose requirement after kidney transplantation. Pharmacogenetics and Genomics, 27(9), 313-322. https://doi.org/.10.1097/FPC.0000000000000296
Manikandan, P., & Nagini, S. (2017). Cytochrome P450 structure, function and clinical significance: A review. Current Drug Targets, 19(1), 38-54. https://doi.org/10.2174/1389450118666170125144557
Malat, G., & Culkin, C. (2016). The ABCs of immunosuppression: A primer for primary care physicians. Medical Clinics of North America, 100(3), 505-518. https://doi.org/10.1016/j.mcna.2016.01.003
Nanga, T. M., Doan, T. T. P., Marquet, P., & Musuamba, F. T. (2019). Toward a robust tool for pharmacokinetic-based personalization of treatment with tacrolimus in solid organ transplantation: A model-based meta-analysis approach. British Journal of Clinical Pharmacology, 85(12), 2793-2823. https://doi.org/10.1111/bcp.14110
Nemes, B., Szederkényi, E., Nagy, K. K., Hartyánszky, I., Ablonczy, L., Vámos, F. R., Mihály, S., & Máthé, Z. (2019). A summary of transplantation activity in Hungary. Transplantation Proceedings, 51(4), 1202-1208. https://doi.org/10.1016/j.transproceed.2019.04.006
Oppenheimer Salinas, F., Pascual Santos, J., & Pallardó Mateu, L. (s.f). Inmunosupresión en el trasplante renal. Nefrología al Día.Recuperado el 25 de junio de 2020 https://www.nefrologiaaldia.org/es.
Piedrasanta, J., Galindo, F., Gómez, D., & Sapón, B. (2017). Trasplante renal como opción terapéutica en Guatemala. Revista de la Asociación de Medicina Interna de Guatemala, 21, 33-38
Prytuła, A., & van Gelder, T. (2019). Clinical aspects of tacrolimus use in paediatric renal transplant recipients. Pediatric Nephrology, 34(1), 31-43. https://doi.org/10.1007/s00467-018-3892-8
Reveiz, L., Pinzón-Flórez, C., Glujovsky, D., Elias, V., & Ordunez, P. (2018). Establecimiento de prioridades de investigación en la enfermedad renal crónica de causas no tradicionales en Centroamérica. Revista Panamericana de Salud Pública, 42, Article e13. https://doi.org/10.26633/rpsp.2018.13
Rojas, L., Neumann, I., Herrero, M. J., Bosó, V., Reig, J., Poveda, J. L., Megías, J., Bea, S., & Aliño, S. F. (2015). Effect of CYP3A5∗3 on kidney transplant recipients treated with tacrolimus: A systematic review and meta-analysis of observational studies. Pharmacogenomics Journal, 15(1), 38-48. https://doi.org/10.1038/tpj.2014.38
Sałagacka-Kubiak, A., Żebrowska-Nawrocka, M., Jeleń, A., Mirowski, M., & Balcerczak. E. (2019). CYP2C19*2 Polymorphism in Polish Peptic Ulcer Patients. Pharmacological Reports, 71(2), 272-75. https://doi.org/10.1016/j.pharep.2018.12.011.
Sam-Colop, B. (2020). Prevalencia y mortalidad de Enfermedad Renal Crónica en Guatemala (2008-2018). Ciencia, Tecnología y Salud, 7(1), 112-123
Scalea, J. R., Levi, S. T., Ally, W., & Brayman, K. L. (2016). Tacrolimus for the prevention and treatment of rejection of solid organ transplants. Expert Review of Clinical Immunology, 12(3), 333-342. https://doi.org/10.1586/1744666X.2016.1123093
Shrestha, B. M. (2017). Two decades of tacrolimus in renal transplant: Basic science and clinical evidence. Experimental and Clinical Transplantation, 15(1). https://doi.org/10.6002/ect.2016.0157
Snowsill, T. M., Moore, J., Mota, R. E. M., Peters, J. L., Jones-Hughes, T. L., Huxley, N. J., Coelho, H. F., Haasova, M., Cooper, C., Lowe, J. A., Varley-Campbell, J. L., Crathorne, L., Allwood, M. J., & Anderson, R. (2017). Immunosuppressive agents in adult kidney transplantation in the National Health Service: A model-based economic evaluation. Nephrology Dialysis Transplantation, 32(7), 1251-1259. https://doi.org/10.1093/ndt/gfx074
Tamashiro, E. Y., Felipe, C. R., Genvigir, F. D. V., Rodrigues, A. C., Campos, A. B., Hirata, R. D. C., Tedesco-Silva, H., & Medina-Pestana, J. O. (2017). Influence of CYP3A4 and CYP3A5 polymorphisms on tacrolimus and sirolimus exposure in stable kidney transplant recipients. Drug Metabolism and Personalized Therapy, 32(2), 89-95. https://doi.org/10.1515/dmpt-2016-003
Thishya, K., Vattam, K. K., Naushad, S. M., Raju, S. B., & Kutala, V. K. (2018). Artificial neural network model for predicting the bioavailability of tacrolimus in patients with renal transplantation. PLoS ONE, 13(4), Article e0191921. https://doi.org/10.1371/journal.pone.0191921
Tornio, A., & Backman, J. T. (2018). Cytochrome P450 in pharmacogenetics: An update. Advances in Pharmacology, 83, 3-32. https://doi.org/10.1016/bs.apha.2018.04.007
Torres Espíndola, L. M., Rojo-Serrato, D., Álvaro-Heredia, A., Castillejos López, M. de J., de Uña-Flores, A., Pérez-García, M., Zapata-Tarres, M., Cárdenas-Cardos, R., Granados, J., Chávez-Pacheco, J. L., Salinas-Lara, C., de Arellano, I. T.-R., & Aquino-Gálvez, A. (2020). Analysis of CYP450 Gene Allelic Variants Can Predict Ifosfamide Toxicity in Mexican Paediatric Patients». Biomarkers, 25(4), 331-40. https://doi.org/10.1080/1354750X.2020.1754913
Tribut, O., Lessard, Y., Reymann, J.-M., Allain, H., & Bentué-Ferrer, D. (2002). Pharmacogenomics. Medical Science Monitor, 8(7), RA152-163.
Vanichanan, J., Udomkarnjananun, S., Avihingsanon, Y., & Jutivorakool, K. (2018). Common viral infections in kidney transplant recipients. Kidney Research and Clinical Practice, 37(4), 323-337. https://doi.org/10.23876/j.krcp.18.0063.
Webster, A. C., Nagler, E. V., Morton, R. L., & Masson, P. (2017). Chronic kidney disease. Lancet, 389(10075), 1238-1252. https://doi.org/10.1016/S0140-6736(16)32064-5
Whirl-Carrillo, M., McDonagh, E. M., Hebert, J. M., Gong, L., Sangkuhl, K., Thorn, C. F., Altman, R. B., & Klein, T. E. (2012). Pharmacogenomics knowledge for personalized medicine. Clinical Pharmacology and Therapeutics, 92(4), 414-417. https://doi.org/10.1038/clpt.2012.96
Woillard, J. B., Chouchana, L., Picard, N., & Loriot, M. A. (2017). Pharmacogenetics of immunosuppressants: State of the art and clinical implementation recommendations from the French National Network of Pharmacogenetics (RNPGx). Therapie, 72(2), 285-299. https://doi.org/10.1016/j.therap.2016.09.016
Yousef, A. M., Qosa, H., Bulatova, N. R., Abuhaliema, A., Almadhoun, H., Khayyat, G., & Olemat, M. (2016). Effects of genetic polymorphism in CYP3A4 and CYP3A5 genes on tacrolimus dose among kidney transplant recipients. Iranian Journal of Kidney Diseases, 10(3), 156-163.
Yu, M., Liu, M., Zhang, W., & Ming, Y. (2018). Pharmacokinetics, pharmacodynamics and pharmacogenetics of tacrolimus in kidney transplantation. Current Drug Metabolism, 19(6), 513-522. https://doi.org/10.2174/1389200219666180129151948
Zhang, H. F., Wang, H. H., Gao, N., Wei, J. Y., Tian, X., Zhao, Y., Fang, Y., Zhou, J., Wen, Q., Gao, J., Zhang, Y. J., Qian, X. H., & Qiao, H. L. (2016). Physiological content and intrinsic activities of 10 cytochrome P450 isoforms in human normal liver microsomes. Journal of Pharmacology and Experimental Therapeutics, 358(1), 83-93. https://doi.org/10.1124/jpet.116.233635
Zolota, A., Miserlis, G., Solonaki, F., Tranda, A., Antoniadis, N., Imvrios, G., & Fouzas, I. (2018). New-onset diabetes after transplantation: Comparison between a cyclosporine-based and a tacrolimus-based immunosuppressive regimen. Transplantation Proceedings, 50(10), 3386-3391. https://doi.org/10.1016/j.transproceed.2018.08.037
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Karla Escobar Castro, Armando Caceres
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
El autor que publique en esta revista acepta las siguientes condiciones:
- El autor otorga a la Dirección General de Investigación el derecho de editar, reproducir, publicar y difundir el manuscrito en forma impresa o electrónica en la revista Ciencia, Tecnología y Salud.
- La Direción General de Investigación otorgará a la obra una licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional