Monthly series comparison of precipitation and temperatures of the CMIP6 Models for Guatemala

Authors

  • Paris Rivera Instituto de Investigaciones de Ingeniera, Matemática y Ciencias Físicas, Universidad Mariano Gálvez de Guatemala https://orcid.org/0000-0001-7259-5152
  • Eduardo Herrera Facultad de Instrumentación Electrónica, Universidad Veracruzana, México
  • Werner Ochoa Escuela de Estudios de Postgrado, Facultad de Ingeniería, Universidad de San Carlos de Guatemala https://orcid.org/0000-0003-4984-2877

DOI:

https://doi.org/10.36829/63CTS.v9i2.1285

Keywords:

Climatic model, precipitation, temperature

Abstract

Metrics from 37 global climate models (GCMs) from Phase 6 of the Coupled Model Intercomparison Project (CMIP6) with the purpose of simulating the climate of Guatemalan from 1971 to 2014. Monthly temperature and precipitation were compared with data from observation of the Climatic Research Unit of the University of East Anglia (CRU). A ranking of models was generated based on the shortest distance between three resignations based on three metrics; Pearson's Correlation Coefficient (PCC), Root Mean Square Error (RMSE), and Standard Deviation (SD). This ordering coincides with the best values ​​of Nash-Sutcliffe efficiency (NSE) for temperature and Kling-Gupta efficiency (KGE) for precipitation; other metrics are calculated; Spearman's correlation coefficient (CCS), mean bias errors (MBE), and mean absolute error (MAE). For precipitation, the first 5 models present KGE values ​​between 0.5 and 0.7, the CCP and CCS between 0.7 and 0.8 compared to CRU. For temperature, the first 5 models present NSE values ​​between 0.5 to 0.6, CCP, and CCS of 0.8. The models slightly overestimate temperature and underestimate precipitation. The models with the best ability were CIESM for temperature and the IPSL-CM6A-LR model for precipitation. Additionally, the average of 66 local stations is compared with CRU, presenting a KGE of 0.51, CCP of 0.77 for precipitation, and NSE of -0.,17, and a CCP of 0.20 for temperature. Finally, a table is presented with the first 10 models for each variable.

 

Downloads

Author Biography

Paris Rivera, Instituto de Investigaciones de Ingeniera, Matemática y Ciencias Físicas, Universidad Mariano Gálvez de Guatemala

Researcher
Research Institute of Engineering, Mathematics and Physical Sciences of the Mariano Gálvez University of Guatemala

References

Agyekum, J., Annor, T., Quansah, E., Lamptey, B., & Okafor, G. (2022). Extreme precipitation indices over the Volta Basin: CMIP6 model evaluation. Scientific African, 16, Artículo e01181. https://doi.org/10.1016/j.sciaf.2022.e01181

Almazroui, M., Islam, M. N., Saeed, F., Saeed, S., Ismail, M., Ehsan, M. A., Diallo, I., O’Brien, E., Ashfaq, M., Martínez-Castro, D., Cavazos, T., Cerezo-Mota, R., Tippett, M. K., Gutowski, W. J., Alfaro, E. J., Hidalgo, H. G., Vichot-Llano, A., Campbell, J. D., Kamil, S., … Barlow, M. (2021). Projected Changes in Temperature and Precipitation Over the United States, Central America, and the Caribbean in CMIP6 GCMs. Earth Systems and Environment, 5(1), 1-24. https://doi.org/10.1007/s41748-021-00199-5

Ayugi, B., Zhihong, J., Zhu, H., Ngoma, H., Babaousmail, H., Rizwan, K., & Dike, V. (2021). Comparison of CMIP6 and CMIP5 models in simulating mean and extreme precipitation over East Africa. International Journal of Climatology, 41(15), 6474-6496. https://doi.org/10.1002/joc.7207

Doty, B., & Kinter, III, J. L. (1995). Geophysical data analysis and visualization using the grid analysis and display system., En E. P. Szuszczewicz & J.H. Bredekamp (Eds.), Visualization Techniques in Space and Atmospheric Sciences (pp. 209-219). NASA.

Fasullo, J. T., Phillips, A. S., & Deser, C. (2020). Evaluation of Leading Modes of Climate Variability in the CMIP Archives. Journal of Climate, 33(13), 5527-5545. https://doi.org/10.1175/jcli-d-19-1024.1

Gulizia, C., & Camilloni, I. (2015). Comparative analysis of the ability of a set of CMIP3 and CMIP5 global climate models to represent precipitation in South America. International Journal of Climatology, 35(4), 583-595. https://doi.org/10.1002/joc.4005

Gupta, H. V., Kling, H., Yilmaz, K. K., & Martinez, G. F. (2009). Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. Journal of Hydrology, 377(1-2), 80-91. https://doi.org/10.1016/j.jhydrol.2009.08.003

Harris, I., Osborn, T. J., Jones, P., & Lister, D. (2020). Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Scientific Data, 7, Artículo 109. https://doi.org/10.1038/s41597-020-0453-3

Kim, Y. H., Min, S. K., Zhang, X., Sillmann, J., & Sandstad, M. (2020). Evaluation of the CMIP6 multi-model ensemble for climate extreme indices. Weather and Climate Extremes, 29, Artículo 100269. https://doi.org/10.1016/j.wace.2020.100269

Lee, T., Waliser, D. E., Li, J. L. F., Landerer, F. W., & Gierach, M. M. (2013). Evaluation of CMIP3 and CMIP5 wind stress climatology using satellite measurements and atmospheric reanalysis products. Journal of Climate, 26(16), 5810-5826. https://doi.org/10.1175/JCLI-D-12-00591.1

Lovino, M. A., Müller, O. V., Berbery, E. H., & Müller, G. V. (2018). Evaluation of CMIP5 retrospective simulations of temperature and precipitation in northeastern Argentina. International Journal of Climatology, 38(S1), Artículo e1158-e1175. https://doi.org/10.1002/joc.5441

Lu, Z., Zhao, T., & Zhou, W. (2020). Evaluation of the Antarctic Circumpolar Wave Simulated by CMIP5 and CMIP6 Models. Atmosphere, 11(9), Artículo 931. https://doi.org/10.3390/atmos11090931

Lupo, A., & Kininmonth, W. (2013). Global Climate Models and Their Limitations. En C. D Idso, R. M. Carter & S. F. Singer (Eds.), Climate Change Reconsidered II, Physical Science (pp. 7-148).Global Climate Models and Their Limitations. Climate Change Reconsidered II.

Maenza, R. A., Agosta, E. A., & Bettolli, M. L. (2017). Climate change and precipitation variability over the western ‘Pampas’ in Argentina. International Journal of Climatology, 37(S1), 445-463. https://doi.org/10.1002/joc.5014

Meher, J. K., Das, L., Akhter, J., Benestad, R. E., & Mezghani, A. (2017). Performance of CMIP3 and CMIP5 GCMs to simulate observed rainfall characteristics over the western Himalayan region. Journal of Climate, 30(19), 7777-7799. https://doi.org/10.1175/JCLI-D-16-0774.1

Moriasi, D., Arnold, J., Van_Liew, M., Bingner, R., Harmel, R., & Veith, T. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. American Society of Agricultural and Biological Engineers, 50(1), 885-900. https://doi.org/10.1234/590

Nash, J. E., & Sutcliffe, J. V. (1970). River Flow Forecasting Through Conceptul Models Part 1-A Discussion of Principles. Journal of Hydrology, 10(3), 282-290. https://doi.org/10.1080/00750770109555783

Panel Intergubernamental del Cambio Climático (Ed.). (2014). Anexo II: Glosario. Cambio Climático 2014: Informe de Síntesis. Contribución de Los Grupos de Trabajo I, II y III Al Quinto Informe de Evaluación Del Grupo Intergubernamental de Expertos Sobre El Cambio Climático.

Palomino-Lemus, R., Córdoba-Machado, S., & Esteban-Parra, M. J. (2015). Evaluación de modelos climáticos globales del CMIP5 sobre el noroeste de América del Sur. Revista Biodiversidad Neotropical, 5(1), 16-22.

Penalba, O. C., & Rivera, J. A. (2016). Regional aspects of future precipitation and meteorological drought characteristics over Southern South America projected by a CMIP5 multi-model ensemble. International Journal of Climatology, 36(2), 974-986. https://doi.org/10.1002/joc.4398

Rogelis, M. C., Werner, M., Obregón, N., & Wright, N. (2016). Hydrological model assessment for flood early warning in a tropical high mountain basin. Hydrology and Earth System Sciences Discussions, March, 1-36. https://doi.org/10.5194/hess-2016-30

Roussel, M.-L., Lemonnier, F., Genthon, C., & Krinner, G. (2020). Brief communication: Evaluating Antarctic precipitation in ERA5and CMIP6 against CloudSat observations. The Cryosphere Discussions, 14(8), 2715-2727. https://doi.org/10.5194/tc-2019-327

Sheffield, J., Camargo, S. J., Fu, R., Hu, Q., Jiang, X., Johnson, N., Karnauskas, K. B., Kim, S. T., Kinter, J., Kumar, S., Langenbrunner, B., Maloney, E., Mariotti, A., Meyerson, J. E., Neelin, J. D., Nigam, S., Pan, Z., Ruiz-Barradas, A., Seager, R., … Zhao, M. (2013). North American climate in CMIP5 experiments. Part II: Evaluation of historical simulations of intraseasonal to decadal variability. Journal of Climate, 26(23), 9247-9290. https://doi.org/10.1175/JCLI-D-12-00593.1

Shu, Q., Wang, Q., Song, Z., Qiao, F., Zhao, J., Chu, M., & Li, X. (2020). Assessment of Sea Ice Extent in CMIP6 With Comparison to Observations and CMIP5. Geophysical Research Letters, 47(9), Artículo e2020GL087965. https://doi.org/10.1029/2020GL087965

Sillmann, J., Kharin, V. V., Zhang, X., Zwiers, F. W., & Bronaugh, D. (2013). Climate extremes indices in the CMIP5 multimodel ensemble: Part 1. Model evaluation in the present climate. Journal of Geophysical Research Atmospheres, 118(4), 1716-1733. https://doi.org/10.1002/jgrd.50203

Taylor, K. E., Balaji, V., Hankin, S., Juckes, M., Lawrence, B., & Pascoe, S. (2012). CMIP5 Data Reference Syntax (DRS) and Controlled Vocabularies. https://www.earthsystemcog.org/site_media/projects/wip/CMIP6_global_attributes_filenames_CVs_v6.2.6.pdf

Taylor, K. E. (2001). Summarizing multiple aspects of model performance in a Single Diagram. Journal of Geophysical Research Atmospheres, 106(D7), 7183-7192. https://doi.org/10.1029/2000JD900719

Voldoire, A., Saint-Martin, D., Sénési, S., Decharme, B., Alias, A., Chevallier, M., Colin, J., Guérémy, J. F., Michou, M., Moine, M. P., Nabat, P., Roehrig, R., Salas y Mélia, D., Séférian, R., Valcke, S., Beau, I., Belamari, S., Berthet, S., Cassou, C., … Waldman, R. (2019). Evaluation of CMIP6 DECK Experiments With CNRM-CM6-1. Journal of Advances in Modeling Earth Systems, 11(7), 2177-2213. https://doi.org/10.1029/2019MS001683

Willmott, C. J., & Matsuura, K. (2005). Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate Research, 30(1), 79-82. https://doi.org/10.3354/cr030079

Zhao, Y., & Sun, D.-Z. (2022). ENSO Asymmetry in CMIP6 Models. Journal of Climate, 35(17), 5555-5572. https://doi.org/10.1175/JCLI-D-21-0835.1

Published

2022-11-30

How to Cite

Rivera, P., Herrera, E., & Ochoa, W. (2022). Monthly series comparison of precipitation and temperatures of the CMIP6 Models for Guatemala. Ciencia, Tecnología Y Salud, 9(2), 132–149. https://doi.org/10.36829/63CTS.v9i2.1285

Issue

Section

Artículos científicos

Most read articles by the same author(s)