Simulation of seasonal temperature and precipitation during the period 1998-2000 in Central America using the regional climate model RegCM
DOI:
https://doi.org/10.36829/63CTS.v8i1.764Abstract
This document presents the results of an analysis on the comparison of the results of a climate simulation model, regional reanalysis data and local data on precipitation and seasonal temperature from twenty-three meteorological stations in Guatemala, to detect signs of the ability of the model to reproduce the seasonal climate over a period of 3 years (1998-2000). The simulation was performed with a regional climate model (RCM), for its dynamic scale reduction, the boundary conditions were obtained from the ERA-Interim reanalysis data. The model used was RegCM, version 4, and it was compared with the precipitation and temperature data from the CRU Database at the Central American regional level and at the national level with three institutions that generate global data (CRU, TRMM and GPCP) and local data. The convective schemes used were the scheme of Grell on land and Emanuel on the ocean, with 50 km of spatial resolution. The adjustments made to the settings generated good performance at the Central American regional level and at the Guatemala level, despite losing skill in some regions and months. The model adequately reproduces the behavior of seasonal precipitation in most of the rainy season. It underestimates the temperature at the regional level but at the Guatemala level it shows a good fit. The comparison with the observed local data shows that the model fits for the period under study, but it is necessary to carry out more experiments with different spatial and temporal resolutions and to evaluate the persistence of the model.
Downloads
References
Amador, J. A., Ambrizzi, T., Arritt, R. W., Castro, C. L., Cavazos, T., Cerezo-Mota, R., Fuentes-Franco, R., Giorgi, F., Guiliani, G., Lee, H., Méndez-Pérez, M., & Rivera, E. R. (2018). Putting into action the REGCM4.6 regional climate model for the study of climate change, variability and modeling over Central America and Mexico. Atmosfera, 31(2), 185-188. https://doi.org/10.20937/ATM.2018.31.02.06
Baker, N. C., & Huang, H.-P. (2014). A comparative study of precipitation and evaporation between CMIP3 and CMIP5 climate model ensembles in semiarid regions. Journal of Climate, 27(10), 3731-3749. https://doi.org/10.1175/JCLI-D-13-00398.1
Cavazos, T., Salinas, J., Martínez, B., Colorado, G., de Grau, P., Prieto-González, R., Conde Álvarez, A. C., Quintanar Isaías, A., Santana Sepúlveda, J. S., Romero Centeno, R., Maya Magaña, M. E., Rosario de La Cruz, Ma. del R., Ayala Enríquez, Carrillo Tlazazanatza, H., Santiesteban, O., & Bravo, M. (2013). Actualización de escenarios de cambio climático para México como parte de los productos de la Quinta Comunicación Nacional. México, Instituto Nacional de Ecología y Cambio Climático.
Cavazos, T., Luna-Niño, R., Cerezo-Mota, R., Fuentes-Franco, R., Méndez, M., Pineda Martínez, L. F., & Valenzuela, E. (2020). Climatic trends and regional climate models intercomparison over the CORDEX˗CAM (Central America, Caribbean, and Mexico). International Journal of Climatology, 40(3), 1396-1420. https://doi.org/10.1002/joc.6276
Dickinson, R., Henderson-Sellers, A., & Kennedy, P. (1993) Biosphere-Atmosphere Transfer Scheme (BATS) version le as coupled to the NCAR community climate model. Technical note. [NCAR (National Center for Atmospheric Research)]. Recuperado de https://www.osti.gov/ biblio/5733868.
Diro, G. T., Rauscher, S. A., Giorgi, F., & Tompkins, A. M. (2012). Sensitivity of seasonal climate and diurnal precipitation over Central America to land and sea surface schemes in RegCM4. Climate Research, 52(1), 31-48. https://doi.org/10.3354/cr01049
Emanuel, K. A. (1991). A scheme for representing cumulus convection in large-scale models. Journal of the Atmospheric Sciences, 48(21), 2313- 2329. https://doi.org/10.1175/1520-0469(1991)048<2313:ASFRCC>2.0.CO;2
Fritsch, J., & Chappell, C. (1980). Numerical Prediction of Convectively Driven Mesoscale Pressure Systems. Part I: Convective Parameterization. Journal of The Atmospheric Sciences, 37(USA), 1722-1733. https://doi.org/10.1175/1520-0469(1980)037<1722:NPOCDM>2.0.CO;2
Fuentes-Franco, R., Coppola, E., Tefera Diro, G., Giorgi, F., Pavia, E. G., & Graef, F. (2013). Changes in inter-annual variability of precipitation and temperature over Mexico and Central America from RegCM projections. EGU General Assembly Conference Abstracts, 15. https://doi.org/10.1007/s00382-014-2258-6
Fuentes-Franco, R., Coppola, E., Giorgi, F., Graef, F., & Pavia, E. G. (2014). Assessment of RegCM4 simulated inter-annual variability and daily-scale statistics of temperature and precipitation over Mexico. Climate Dynamics, 42(3-4), 629-647. https://doi.org/10.1007/s00382-013-1686-z
García-Díez, M., Stegehuis, A., Magariño, M. E., Vautard, R., & Fernández, J. (2013). Using multi-physics ensembles to explore sources of uncertainty in the climate system. 1, 22158. https://www.meteo.unican.es/files/posters/2013_ Garcia-Diez_CORDEX_Brussels.pdf
Giorgi, F., & Lionello, P. (2007). Climate change projections for the Mediterranean region. Global and Planetary Change, 63(2-3), 90-104. https://doi.org/10.1016/j.gloplacha.2007.09.005
Giorgi, F. (1990). Simulation of Regional Climate Using a Limited Area Model Nested in a General Circulation Model. Journal of Climate, 3(9), 941-963). https://doi.org/10.1175/1520-0442(1990)003<0941:SORCUA>2.0.CO;2
Giorgi, F., & Mearns, L. O. (1991). Approaches to the simulation of regional climate change: A review. Reviews of Geophysics, 29(2), 191-216. https://doi.org/10.1029/90RG02636
Giorgi, F., Bates, G. T., & Nieman, S. J. (1993). The multiyear surface climatology of a regional atmospheric model over the western United States. Journal of Climate, 6(1), 75-95. https://doi.org/10.1175/1520-0442(1993)006<0075:TMSCOA>2.0.CO;2
Grell, G. A. (1993). Prognostic evaluation of assumptions used by cumulus parameterizations. Monthly Weather Review, 121(3), 764-787. https://doi.org/10.1175/1520-0493(1993)121<0764:PEOAUB>2.0.CO;2
Karmalkar, A. V., Bradley, R. S., & Diaz, H. F. (2011). Climate change in Central America and Mexico: Regional climate model validation and climate change projections. Climate Dynamics, 37(3), 605-629. https://doi.org/10.1007/s00382-011-1099-9
López Moreno, J. I., & Vicente Serrano, S. M. (2008). Predicciones de cambio climático en La Rioja a partir de modelos regionales: Estimaciones para finales del siglo XXI. Zubía Monográfico, 20, 187-200.
Reboita, M. S., Dias, C. G., Dutra, L. M. M., da Rocha, R. P., & Llopart, M. (2018). Previsão climática sazonal para o Brasil obtida através de modelos climáticos globais e regional. Revista Brasileira de Meteorologia, 33(2), 207-224. https://doi.org/10.1590/0102-7786332001
Van den Hurk, B. J. J. M., & van Meijgaard, E. (2010). Diagnosing land-atmosphere interaction from a regional climate model simulation over West Africa. Journal of Hydrometeorology, 11(2), 467-481. https://doi.org/10.1175/2009JHM1173.1
Vichot-Llano, A., Martínez-Castro, D., Centella-Artola, A., & Bezanilla-Morlot, A. (2014). Sensibilidad al cambio de dominio y resolución de tres configuraciones del modelo climático regional RegCM 4.3 para la región de América Central y el Caribe. Revista de Climatología, 14, 45-62.
Wang, X., Yang, M., & Pang, G. (2015). Influences of two land-surface schemes on regcm4 precipitation simulations over the tibetan plateau. Advances in Meteorology. https://doi.org/10.1155/2015/106891 Widmann, M., Bretherton, C. S., & Salathé, E. P. (2003). Statistical precipitation downscaling over the northwestern united states using numerically simulated precipitation as a predictor. Journal of Climate, 16(5), 799-816. https://doi.org/10.1175/1520-0442(2003)016<0799:SPDOTN>2.0.CO;2
Yang, M., Zuo, R., Wang, L., & Chen, X. (2018). Simulation of Land Surface Climate over China with RegCM4.5: Verification and Analysis. Advances in Meteorology. https://doi.org/10.1155/2018/7960908
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Paris Francisco Rivera Ramos, Wener Ochoa, Bayron Gonzalez
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
El autor que publique en esta revista acepta las siguientes condiciones:
- El autor otorga a la Dirección General de Investigación el derecho de editar, reproducir, publicar y difundir el manuscrito en forma impresa o electrónica en la revista Ciencia, Tecnología y Salud.
- La Direción General de Investigación otorgará a la obra una licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional