Effect of vegetation cover of uninhabited areas on the perception of ecologically viable containers available for the development of Aedes aegypti Linnaeus, 1762
DOI:
https://doi.org/10.36829/63CTS.v10i2.1544Keywords:
Zika, Generalized Linear Models, Vegetation Cover Indices, Vector Control, Mosquito-Borne DiseasesAbstract
In Guatemala, the dengue virus vector transmitted by Aedes aegypti Linnaeus, 1762 (Diptera: Culicidae) is distributed throughout the country. Being anthropophilic, it is usually found in any human-associated container that stores water, such as domestic water basins, used tires, batteries, or even inside the hard husks of fruits like coconuts. After the Zika epidemic in 2015, it was suggested that there is a relationship between non-residential larval habitats with little or no vegetation cover and the persistence of ecologically viable containers for mosquito populations-. Consequently, we conducted a study around the cities of San Benito and Santa Elena, Petén to establish the effect that non-residential larval habitats have on containers hidden by vegetation. To achieve this, we visited non-residential larval habitats with vegetation cover in each area to record the number of potential water containers and larvae per evaluation site. We also photographed the study area to calculate vegetation cover indices (GRVI y VARI). With this information, the possible relationship of the variables was evaluated by fitting generalized linear models with Poisson distribution with inflated zeros. According to our model, the average number of containers that we could find per evaluated non-residential larval habitat is 78 (σ = 9); and considering the number of zeros obtained during the study there is 70% probability (σ = 2) of not detecting them in the evaluation areas. These findings demonstrate how the presence of plant cover influences the visibility of suitable breeding containers for Aedes aegypti, and the occurrence of false negatives rises accordingly.
Downloads
References
Bova, J., Paulson, S., & Paulson, G. (2016). Morphological differentiation of the eggs of North American container-inhabiting Aedes mosquitoes. Journal of the American Mosquito Control Association, 32(3), 244-246. https://doi.org/10.2987/15-6535.1
Carter, H. (1924). Preferential and compulsory breeding places of Aedes (stegomyia) aegypti and their limits. Annals of Tropical Medicine and Parasitology, 18(4), 493-503. https://doi.org/10.1080/00034983.1924.11684429
Costa, F., Fattore, G., & Abril, M. (2012). Diversity of containers and buildings infested with Aedes aegypti in Puerto Iguazú, Argentina. Cadernos de Saúde Pública, 28(9), 1802-1806. https://doi.org/10.1590/S0102-311X2012000900019
Crespo, de J. R., & Rogers, R. E. (2021). Habitat Segregation Patterns of Container Breeding Mosquitos: The Role of Urban Heat Islands, Vegetation Cover, and Income Disparity in Cemeteries of New Orleans. International Journal of Environmental Research and Public Health, 19(1), Artículo 245. https://doi.org/10.3390/ijerph19010245
Devera, R., Devera, Z., & Velásquez, V. (2013). Presencia de Aedes aegypti en el cementerio jobo liso de Ciudad Bolívar, Estado Bolívar, Venezuela. Saber, 25(4).
Diéguez, L., Hernández, C. A., Zacarías, R., & Salazar, V. (2006). Contribución al estudio de la familia Culicidae de Guatemala: Relación y distribución geográfica de las principales especies en la región norte. Revista Cubana Medicina Tropical, 58(1), 30-35.
Diéguez-Fernández, L., Andrés-García, J., Martín-Martínez, J., Fimia-Duarte, R., Iannacone, J., & Alarcón-Elbal, P. (2015). Comportamiento estacional y relevancia de los depósitos permanentes y útiles para la presencia de Aedes (Stegomyia) Aegypti en Camagüey, Cuba. Neotropical Helminthology, 9(1), 103-111.
Farajollahi, A., & Price, D. C. (2013). A rapid identification guide for larvae of the most common North American container-inhabiting Aedes species of medical importance. Journal of the American Mosquito Control Association, 29(3), 203-221. https://doi.org/10.2987/11-6198R.1
Gitelson, A. A., Kaufman, Y. J., Stark, R., & Rundquist, D. (2002). Novel algorithms for remote estimation of vegetation fraction. Remote Sensing of Environment, 80(1), 76-87. https://doi.org/10.1016/S0034-4257(01)00289-9
Hamlyn-Harris, R. (1927). Notes on the breeding places of two mosquitoes in Queensland. Bulletin of Entomological Research, 17(4), 411-414. https://doi.org/10.1017/S0007485300019519
Honório, N. A., & Lourenço-de-Oliveira, R. (2001). Freqüência de larvas e pupas de Aedes aegypti e Aedes albopictus em armadilhas, Brasil. Revista de Saúde Pública, 35(4), 385-391. https://doi.org/10.1590/S0034-89102001000400009
Jentes, E. S., Poumerol, G., Gershman, M. D., Hill, D. R., Lemarchand, J., Lewis, R. F., Staples, J. E., Tomori, O., Wilder-Smith, A., & Monath, T. P. (2011). The revised global yellow fever risk map and recommendations for vaccination, 2010: Consensus of the Informal WHO Working Group on Geographic Risk for Yellow Fever. The Lancet Infectious Diseases, 11(8), 622-632. https://doi.org/10.1016/S1473-3099(11)70147-5
Leparc-Goffart, I., Nougairede, A., Cassadou, S., Prat, C., & de Lamballerie, X. (2014). Chikungunya in the Americas. The Lancet, 383(9916), 514. https://doi.org/10.1016/S0140-6736(14)60185-9
Lepe López, M. A., Dávila, M., Canet, M., Lopez, Y., Flores, E., Dávila, A., & Escobar, L. E. (2017). Distribución de Aedes aegypti y Aedes albopictus en Guatemala 2016. Ciencia, Tecnología y Salud, 4(1), 21-31. https://doi.org/10.36829/63CTS.v4i1.239
Makowski, D., Ben-Shachar, M., & Lüdecke, D. (2019). bayestestR: Describing Effects and their Uncertainty, Existence and Significance within the Bayesian Framework. Journal of Open Source Software, 4(40), 1541. https://doi.org/10.21105/joss.01541
Makowski, D., Ben-Shachar, M. S., Chen, S. H. A., & Lüdecke, D. (2019). Indices of Effect Existence and Significance in the Bayesian Framework. Frontiers in Psychology, 10. https://doi.org/10.3389/fpsyg.2019.02767
Martín, E., Alonso, A., Faraone, J., Stain, N., & Estallo, E. (2022). Aedes aegypti and Aedes albopictus abundance, landscape coverage and spectral indices effects in a subtropical city of Argentina. BioRxiv. https://doi.org/10.1101/2022.01.11.475665
Matsuo, K., Yoshida, Y., & Lien, J. C. (1974). Scanning electron microscopy of mosquitoes: II. The egg surface structure of 13 species of Aedes from Taiwan. Journal of Medical Entomology, 11(2), 179-188. https://doi.org/10.1093/jmedent/11.2.179
McElreath, R. (2020). Rethinking: Statistical Rethinking book package (R package version 2.13).
Ministerio de Salud Pública y Asistencia Social/Organización Panamericana de la Salud. (2015). Manual operativo de vigilancia y control entomológico de Aedes aegypti vector del dengue y Chikungunya en Guatemala.
Monroy, C., Yuichiro, T., Rodas, A., Mejía, M., Pichilla, R., Mauricio, H., & Pérez, M. (1999). Distribución de Aedes albopictus (Diptera: Culicidad) en Guatemala, seguimiento a una colonización de 1995. Revista Científica, 12(1), 29-32.
Monzón, M. V., Rodríguez, J., Diéguez, L., Alarcón-Elbal, P. M., & San Martín, J. L. (2019). Hábitats de cría de Aedes aegypti (Diptera: Culicidae) en Jutiapa, Guatemala. Novitates Caribaea, 14, 111-120. https://doi.org/10.33800/nc.v0i14.203
Motohka, T., Nasahara, K. N., Oguma, H., & Tsuchida, S. (2010). Applicability of Green-Red Vegetation Index for Remote Sensing of Vegetation Phenology. Remote Sensing, 2(10), 2369-2387. https://doi.org/10.3390/rs2102369
Nelson, M. J. (1986). Aedes aegypti Biología y Ecología. Organización Panamericana de la Salud.
Ogata, K., & López Samayoa, A. (1996). Discovery of Aedes albopictus in Guatemala. Journal of the American Mosquito Control Association, 12(3), 503-506.
Organización Panamericana de la Salud, Organización Mundial de la Salud (OPS/OMS), Programa de Naciones Unidas para el Medio Ambiente (PNUMA), & Fondo para el Medio Ambiente Mundial (FNAM). (2008). El caso del proyecto de demostración de Guatemala. En Programa regional de acción y demostración de alternativas sostenibles para el control de vectores de la malaria sin uso de DDT en México y América Central (No. GFL-2328-2760-4680, pp. 89-92).
QGIS Development Team. (2022). QGIS Geographic Information System. Open Source Geospatial Foundation Project. [Software]. https://qgis.org.
R Core Team. (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing [Software]. https://www.R-project.org/.
Reunión Binacional de Salud Pública Guatemala-México. (1984). Informe del programa de malaria de Guatemala. Ministerio de Salud y Asistencia Social.
Rey, J. R., Nishimura, N., Wagner, B., Braks, M. A. H., O’Connell, S. M., & Lounibos, L. P. (2006). Habitat Segregation of Mosquito Arbovirus Vectors in South Florida. Journal of Medical Entomology, 43(6), 1134-1141. https://doi.org/10.1093/jmedent/43.6.1134
Rodríguez-Flores, J., Monzón-Muñoz, M. V., Diéguez- Fernández, L., Yax-Caxaj, P. M., & Iannacone, J. (2018). Culícidos de relevancia médico-veterinario de Jutiapa, Guatemala: 2009-2017. Biotempo, 15(1), 49-57. https://doi.org/10.31381/biotempo.v15i1.1695
Rogers, D. J., Wilson, A. J., Hay, S. I., & Graham, A. J. (2006). The global distribution of yellow fever and dengue (pp. 181-220). https://doi.org/10.1016/S0065-308X(05)62006-4
Sanabria, E., Rodríguez, N., Samudio, M., Martínez, N., Torales, M., & Aguayo, N. (2017). Criaderos de Aedes aegypti en la ciudad de Asunción, Paraguay durante los años 2011-2014. Revista de Salud Pública del Paraguay, 7(1), 33-36. https://doi.org/10.18004/rspp.2017.junio.33-36
Servicio Nacional de Erradicación de la Malaria. (1975). Memoria Anual 1974. Ministerio de Salud Pública y Asistencia Social.
Simmons, C. P., Farrar, J. J., van Vinh Chau, N., & Wills, B. (2012). Dengue. New England Journal of Medicine, 366(15), 1423-1432. https://doi.org/10.1056/NEJMra1110265
Stein, M., Ludueña-Almeida, F., Willener, J. A., & Almirón, W. R. (2011). Classification of immature mosquito species according to characteristics of the larval habitat in the subtropical province of Chaco, Argentina. Memórias do Instituto Oswaldo Cruz, 106(4), 400-407. https://doi.org/10.1590/S0074-02762011000400004
Stein, M., Oria, G. I., & Almirón, W. R. (2002). Principales criaderos para Aedes aegypti y culícidos asociados, Argentina. Revista de Saúde Pública, 36(5), 627-630. https://doi.org/10.1590/S0034-89102002000600013
The Global Fund. (2015). Results Report 2015. https://www.theglobalfund.org/en/archive/annual-reports/
Thomas, H. W. (1910). The sanitary conditions and diseases prevailing in Manaos and chart. Annals of Tropical Medicine Parasitology, 4(1), 7-55.
Vehtari, A., Simpson, D., Gelman, A., Yao, Y., & Gabry, J. (2015). Pareto Smoothed Importance Sampling. https://doi.org/10.48550/arXiv.1507.02646
Villatoro, G. R. (2006). Historia del dengue en Guatemala [Tesis de Maestría, Universidad de San Carlos de Guatemala].
Watanabe, S. (2010). Asymptotic Equivalence of Bayes Cross Validation and Widely Applicable Information Criterion in Singular Learning Theory. Journal of Machine Learning Research, 11, 3571-3594
World Health Organization. (2017). Dengue y dengue grave. Centro de Prensa: Nota Descriptiva. http://www.who.int/mediacentre/factsheets/fs117/es/
Zika AIRS Project. (2019). Final Report. The Zika AIRS Project, Abt Associates Inc. https://pdf.usaid.gov/pdf_docs/PA00TZZP.pdf
Zika Community Response Project. (2019). Final activity report. USAID Zika program. https://pdf.usaid.gov/pdf_docs/PA00WK9H.pdf
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Julio David Soto López, Carmen Vieira-Lista, Manuel Barrios-Izas
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
El autor que publique en esta revista acepta las siguientes condiciones:
- El autor otorga a la Dirección General de Investigación el derecho de editar, reproducir, publicar y difundir el manuscrito en forma impresa o electrónica en la revista Ciencia, Tecnología y Salud.
- La Direción General de Investigación otorgará a la obra una licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional
Funding data
-
Universidad de San Carlos de Guatemala
Grant numbers 4.8.58.0.74