Production of biodegradable plastics from saline habitats bacteria isolated from Laguna de Ayarza
DOI:
https://doi.org/10.36829/63CTS.v9i2.1368Keywords:
Biopolymers, biprocessing, plastic waste, extremophiles, polyhydroxybutyrateAbstract
Pollution by petrochemical plastics is a serious threat to the environment that requires the implementation of alternatives such as bioplastics to achieve sustainable development. Polyhydroxyalkanoates (PHAs) are polymers used for the production of biodegradable plastics and have drawn attention as substitutes for fossil-based plastics. However, the cost of producing PHAs constitutes a barrier to their large-scale industrial production.
Bacteria from saline environments bacteria are promising microorganisms for PHA synthesis due to their characteristics such as high salinity requirements that prevent microbial contamination, high intracellular osmotic pressure that allows easy cell lysis to purify PHAs, and the ability to use a broad spectrum of substrates. This research project aimed to determine the native strains of halophilic and halotolerant bacteria from Laguna de Ayarza capable of producing PHA, establish their ability to use agricultural residues for the production of PHA, and determine their efficiency. This was achieved through the inoculation of the PHA-producing strains in fermentation media with coffee pulp, banana peels and wheat bran, which allowed determining the most efficient strains. It was found that the PHA-producing bacteria belong to the species: Alcaligenes faecalis, Bacillus idriensis, Bacillus megaterium, Exiguobacterium acetylicum, E. aurantiacum, Pseudomonas cuatrocienegasensis and Staphylococcus capitis and that the strains AP21-14, AP21-10 and AP21-03 showed the best results that could be promising for production at an industrial level.
Downloads
References
Cervantes-Uc, J. M., Catzin, J., Vargas, I., Herrera-Kao, W., Moguel, F., Ramirez, E., Rincón-Arriaga, S., & Lizama-Uc, G. (2014). Biosynthesis and characterization of polyhydroxyalkanoates produced by an extreme halophilic bacterium, Halomonas nitroreducens, isolated from hypersaline ponds. Journal of Applied Microbiology, 117(4), 1056-1065. https://doi.org/10.1111/jam.12605
Dong-Heon, L., Suan-Ran, M., Young-Hyun, P., Jung-H, K., Hoon, K., Parales, R., & Hyung-Yeel, K. (2010). Pseudomonas taeanensis sp. nov., isolated from a crude oil-contaminated seashore. Internation Journal of Systematic and Evolutionary Microbiology, 60(12), 175-182. https://doi.org/ 10.1099/ijs.0.018093-0
Du, C., Sabirova, J., Soetaert, W., & Ki Carol Lin, S. (2012). Polyhydroxyalkanoates production from low-cost sustainable raw materials. Current chemical biology, 6(1), 14-25. https://doi.org/10.2174/187231312799984394
Edbeib, M. F., Wahab, R. A., & Huyop, F. (2016). Halophiles: Biology, adaptation, and their role in decontamination of hypersaline environments. World Journal of Microbiology and Biotechnology, 32(8), Artículo 135. https://doi.org/10.1007/s11274-016-2081-9
Fuentes, Á., Carreño, C., & Llanos, C. (2013). Rendimiento de exopolisacáridos emulgentes producidos por bacterias halófilas nativas en tres concentraciones de melaza de Saccharum officinarum L. “caña de azúcar”. Scientia Agropecuaria, 4(2), 111-120. https://doi.org/10.17268/sci.agropecu.2013.02.04
Gunaratne, L. M. W. K., Shanks, R. A., & Amarasinghe, G. (2004). Thermal history effects on crystallisation and melting of poly (3-hydroxybutyrate). Thermochimica Acta, 423(1-2), 127-135. https://doi.org/10.1016/j.tca.2004.05.003
Guzmán, C., Hurtado, A., Carreño, C., & Casos, I. (2017). Producción de polihidroxialcanoatos por bacterias halófilas nativas utilizando almidón de cáscaras de Solanum tuberosum L. Scientia Agropecuaria, 8(2), 109-118. https://doi.org/10.17268/sci.agropecu.2017.02.03
Holland, R. D., Wilkes, J. G., Rafii, F., Sutherland, J. B., Persons, C. C., Voorhees, K. J., & Lay Jr, J. O. (1996). Rapid identification of intact whole bacteria based on spectral patterns using matrix‐assisted laser desorption/ionization with time‐of‐flight mass spectrometry. Rapid Communications in Mass Spectrometry, 10(10), 1227-1232. https://doi.org/10.1002/(SICI)1097-0231(19960731)10:10<1227::AID-RCM659>3.0.CO;2-6
Hottle, T. A., Bilec, M. M., & Landis, A. E. (2013). Sustainability assessments of bio-based polymers. Polymer Degradation and Stability, 98(9), 1898-1907. https://doi.org/10.1016/j.polymdegradstab.2013.06.016
Jain, R., & Tiwari, A. (2014). Homology modelling of PHA synthases in Cupriavidus necator. Internatinal Journal of Universal Pharmacy and Bio Sciences, 3(3), 214-223.
Joyline, M., & Aruna, K. (2019). Production and characterization of polyhydroxyalkanoates (pha) by Bacillus megaterium strain jha using inexpensive agro-industrial wastes. International Journal of Recent Scientific Research, 10(7), 33359-33374.
Kanekar, P. P., Joshi, A. A., Kelkar, A. S., Borgave, S. B., & Sarnaik, S. S. (2008). Alkaline Lonar lake, India - a treasure of alkaliphilic and halophilic bacteria. En M. Sengupta & R. Dalwani(Eds.), The 12th World Lake Conference (pp. 1765-1774).
Katircioğlu, H., Aslim, B., Yüksekdao, Z. N., Mercan, N., & Beyatli, Y. (2003). Production of poly-β-hydroxybutyrate (PHB) and differentiation of putative Bacillus mutant strains by SDS-PAGE of total cell protein. African Journal of Biotechnology, 2(6), 147-149. https://doi.org/10.5897/AJB2003.000-1029
Khanna, S., & Srivastava, A. K. (2005). Recent advances in microbial polyhydroxyalkanoates. Process Biochemistry, 40(2), 607-619. https://doi.org/10.1016/j.procbio.2004.01.053
Koller, M., Maršálek, L., de Sousa Dias, M. M., & Braunegg, G. (2017). Producing Microbial Polyhydroxyalkanoate (PHA) Biopolyesters in a Sustainable Manner. New Biotechnology, 37(Part A), 24-38. https://doi.org/ 10.1016/j.nbt.2016.05.001
Lee, S. Y., Choi, J.-I., Han, K., & Song, J. Y. (1999). Removal of endotoxin during purification of poly (3-hydroxybutyrate) from gram-negative bacteria. Applied and Environmental Microbiology, 65(6), 2762-2764.
https://doi.org/10.1128/AEM.65.6.2762-2764.1999
Mekonnen, T., Mussone, P., Khalil, H., & Bressler, D. (2013). Progress in bio-based plastics and plasticizing modifications. Journal of Materials Chemistry A, 1(43), 13379-13398. https://doi.org/10.1039/C3TA12555F
Mellinas, C., Valdés, A., Ramos, M., Burgos, N., Garrigos, M. del C., & Jiménez, A. (2016). Active edible films: Current state and future trends. Journal of Applied Polymer Science, 133(2). https://doi.org/10.1002/app.42631
Mitra, R., Xu, T., Xiang, H., & Han, J. (2020). Current developments on polyhydroxyalkanoates synthesis by using halophiles as a promising cell factory. Microbial Cell Factories, 19, Artículo 86. https://doi.org/10.1186/s12934-020-01342-z
Mohammed, S., Panda, A. N., & Ray, L. (2019). An investigation for recovery of polyhydroxyalkanoates (PHA) from Bacillus sp. BPPI-14 and Bacillus sp. BPPI-19 isolated from plastic waste landfill. International Journal of Biological Macromolecules, 134, 1085-1096. https://doi.org/10.1016/j.ijbiomac.2019.05.155
Muhammadi, S., Afzal, M., & Hameed, S. (2015). Bacterial polyhydroxyalkanoates-eco-friendly next generation plastic: Production, biocompatibility, biodegradation, physical properties and applications. Green Chemistry Letters and Reviews, 8(3-4), 56-77. https://doi.org/10.1080/17518253.2015.1109715
Obruca, S., Sedlacek, P., Slaninova, E., Fritz, I., Daffert, C., Meixner, K., Sedrlova, Z., & Koller, M. (2020). Novel unexpected functions of PHA granules. Applied Microbiology and Biotechnology, 104(11), 4795-4810. https://doi.org/10.1007/s00253-020-10568-1
Rathika, R., Janaki, V., Shanthi, K., & Kamala-Kannan, S. (2018). Bioconversion of agro-industrial effluents for polyhydroxyalkanoates production using Bacillus subtilis RS1. International Journal of Environmental Science and Technology, 16(10), 5725–5734. https://doi.org/10.1007/s13762-018-2155-3
Reddy, M. V., & Mohan, S. V. (2012). Effect of substrate load and nutrients concentration on the polyhydroxyalkanoates (PHA) production using mixed consortia through wastewater treatment. Bioresource Technology, 114, 573-582. https://doi.org/10.1016/j.biortech.2012.02.127
Sadh, P. K., Duhan, S., & Duhan, J. S. (2018). Agro-industrial wastes and their utilization using solid state fermentation: A review. Bioresources and Bioprocessing, 5, Artículo 1. https://doi.org/10.1186/s40643-017-0187-z
Seo, K. S., & Bohach, G. A. (2014). Staphylococcus aureus. En M. P. Doyle, F. Diez-Gonzalez & C. Hill (Eds.), Food Microbiology: Fundamentals and frontiers (4th ed.,pp. 547–573). https://doi.org/10.1128/9781555818463.ch21
Thakur, S., Chaudhary, J., Sharma, B., Verma, A., Tamulevicius, S., & Thakur, V. (2018). Sustainability of bioplastics: Opportunities and challenges. Current Opinion in Green and Sustainable Chemistry, 13, 68-75. https://doi.org/10.1016/j.cogsc.2018.04.013
Wang, Y., Sun, Z., Tian, J., Wang, H., Wang, H., & Ji, Y. (2016). Influence of Environment on Ageing Behaviour of the Polyurethane Film. Materials Science, 22(2), 1392-1320. https://doi.org/10.5755/j01.ms.22.2.12935
Yajima, T., Nagatomo, M., Wakabayashi, A., Sato, M., Taguchi, S., & Maeda, M. (2020). Bioconversion of biphenyl to a polyhydroxyalkanoate copolymer by Alcaligenes denitrificans A41. AMB Express, 10, Artículo 155. https://doi.org/10.1186/s13568-020-01093-5
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Maria del Carmen Bran, Ricardo Figueroa, Osberth Morales, Gustavo Álvarez Valenzuela
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
El autor que publique en esta revista acepta las siguientes condiciones:
- El autor otorga a la Dirección General de Investigación el derecho de editar, reproducir, publicar y difundir el manuscrito en forma impresa o electrónica en la revista Ciencia, Tecnología y Salud.
- La Direción General de Investigación otorgará a la obra una licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional
Funding data
-
Universidad de San Carlos de Guatemala
Grant numbers DIGI AP21-2021