Input of Nitrogen and Phosphorus to Lake Atitlán (Guatemala) via atmospheric deposition

Authors

  • Margaret A. Dix CEA, UVG
  • Sofia Gomez Centro Universitario del Occidente, Universidad de San Carlos de Guatemala
  • Ovidio F. Garcia-Oliva Helmholtz-Zentrum Geesthacht https://orcid.org/0000-0001-6060-2001
  • Michael W. Dix Universidad del Valle de Guatemala
  • Claudia S. Romero-Oliva Universidad delValle de Guatemala
  • Jorge Garcia-Polo

DOI:

https://doi.org/10.36829/63CTS.v9i1.1043

Keywords:

eutrophication, nutrient relative contribution, neotropical watersheds

Abstract

Atmospheric nutrient deposition has serious impacts on the ecology of forests and temperate water bodies nevertheless its importance in Neotropical water bodies has hardly been studied. Here we quantify the contribution of bulk atmospheric deposition on wet surfaces of dissolved inorganic nitrogen (DIN, [NO3--N + NH4+-N]) and soluble inorganic phosphorus (SIP, [PO4-3-P]) into Lake Atitlán (Guatemala). The estimated NID and SIP loads from this direct deposition on the lake surface were respectively, 151.2 tons/year and 5.6 tons/year. With these results, we estimated that the SIP input from atmospheric deposition to Lake Atitlán is comparable to that from the lake’s main tributary rivers, whereas for DIN entry this is almost twice as much. Estimates for Lake Atitlán are higher than those reported for many lakes. Our study provides basic information towards understanding the eutrophication of Lake Atitlán, emphasizes the importance of atmospheric deposition in this process and the need for additional studies to document the process in neotropical watersheds

Downloads

Download data is not yet available.

Author Biographies

Margaret A. Dix, CEA, UVG

Investigadora, Centro de Estudios Atitlan

Ovidio F. Garcia-Oliva, Helmholtz-Zentrum Geesthacht

Institute of Coastal Research

Michael W. Dix, Universidad del Valle de Guatemala

Investigador, Centro de Estudios Atitlan

Claudia S. Romero-Oliva, Universidad delValle de Guatemala

Investigadora Centro de Estudios Atitlan

Jorge Garcia-Polo

Centro de Estudios Atitlán, Universidad del Valle de Guatemala Campus Altiplano

References

Amodio, M., Catino, S., Dambruoso, P. R., de Gennaro, G., Di Gilio, A., Giungato, P., Laiola, E., Marzocca, A., Mazzone, A, Sardaro, A., & Tutino, M. (2014). Atmospheric deposition: Sampling procedures, analytical methods, and main recent findings from the scientific literature. Advances in Meteorology, Artículo 161730. https://doi.org/10.1155/2014/161730

Anderson, K. A., & Downing, J. A. (2006). Dry and wet atmospheric deposition of nitrogen, phosphorus and silicon in an agricultural region. Water, Air, and Soil Pollution, 176, 351- 374. https://doi.org/10.1007/s11270-006-9172-4

Baker, D. (2011). Final Report: Part 1 trends in bioavailable phosphorus loading at River Monitoring Stations. Heidelberg University.

Baron, J., Driscoll, C., Stoddard, J., & Richer, E. (2011). Empirical critical loads of atmospheric nitrogen deposition for nutrient enrichment and acidification of sensitive US lakes. BioScience, 61(8), 602-613. https://doi.org/10.1525/bio.2011.61.8.6

Basterrechea, M. (1986). Limnological characteristics of Lake Amatitlán, Guatemala. Revista Brasileira de Biologia, 46, 461-468.

Benedict, K. B., Chen, X., Sullivan, A. P., Li, Y., Day, D., Prenni, A. J., Levin, E. J. T., Kreidenweiss, S. M., Malm, W. C., Schichtel, B. A., & Collett, J. L. J. (2013). Atmospheric concentrations and deposition of reactive nitrogen in Grand Teton National Park. Journal of Geophysical Research: Atmospheres, 118(20), 11875-11887. https://doi.org/10.1002/2013JD020394

Blake, T. W., & Downing, J. A. (2009). Measuring atmospheric nutrient deposition to inland waters evaluation of direct methods. Limnology and Oceanography, 7(9), 638-647. https://doi.org/10.4319/lom.2009.7.638

Brezonik, P. L., & Fox J. L. (1974). The limnology of selected Guatemalan lakes. Hydrobiology, 45, 467-487. https://doi.org/10.1007/BF00012032

Brown, L. J., Taleban, V., Gharabaghi, B., & Weiss, L. (2011). Seasonal and spatial distribution patterns of atmospheric phosphorus deposition to Lake Simcoe, On: Journal of Great Lakes Research, 37, 15-25. https://doi.org/10.1016/j.jglr.2011.01.004

Castañeda, C. (1995). Sistemas lacustres de Guatemala: Recursos que mueren. Editorial Universitaria.

Catalán, J., & Donato Rondon, J. C. (2016). Perspectives for an integrated understanding of tropical and temperate high-mountain lakes. Journal of Limnology, 75(S1), 215-234. https://doi.org/10.4081/jlimnol.2016.1372

Chandra, S., Rejmánkova, E., Dix, M., Giron, N., Mosquera, V., Sandoval, K., & Ochaeta, G. (2014). Estado del Lago Atitlán, informe 2014. Universidad de Nevada Reno.

Cifuentes, R., Sierra, C., Arévalo L. A., Beteta C., Herrera E. & Álvarez, M. R. (2014). El sistema milpa del departamento de Sololá visto desde la experiencia y vivencia de los productores de maíz de la región. Revista Universidad del Valle de Guatemala, 27, 11-30.

Dix, M. A., Dix, M. W., Orozco, M., Cabrera, D., Bocel, B., Toledo, A., & Symonds, E. (2012). El Lago Atitlán: Su estado ecológico octubre 2009 - diciembre 2011. Revista Universidad del Valle de Guatemala, 24, 35-50.

Dix, M. A., Fortín, I., Medinilla, O., & Ríos, L. (Eds.). (2003). Diagnóstico ecológico-social en la Cuenca de Atitlán. Universidad del Valle de Guatemala/The Nature Conservancy.

Eaton A. D. (2005). Standard methods for the examination of water and wastewater. American Public Health Association.

Eisenreich, S. J., Emmling, P. J., & Beeton, A. M. (1977). Atmospheric loading of phosphorus and other chemicals to Lake Michigan. Journal of Great Lakes Research, 3(3-4), 291-304. https://doi.org/10.1016/S0380-1330(77)72261-0

Elser, J. J., Andersen, T., Baron, J. S., Bergström, A.-K., Jansson, M., Kyle, M., Nydick, K. R., Steger, L., & Hessen, D. O. (2009). Shifts in lake N:P stoichiometry and nutrient limitation driven by atmospheric nitrogen deposition. Science, 326(5954), 835-337. https://doi.org/10.1126/science.1176199

Flores-Anderson, A. I., Griffin, R., Dix, M., Romero-Oliva. C. S., Ochaeta, G., Skinner-Alvarado, J., Ramirez Moran, M. V., Hernández, B., Cherringon, E., Page, B., & Barreno, F. (2020). Hyperspectral satellite remote sensing of water quality in Lake Atitlán, Guatemala. Frontiers in Environmental Science, 8, Artículo 7. https://doi.org/10.3389/fenvs.2020.00007

García-Oliva, O. (2018). Clasificadores binarios como modelos predictivos de florecimientos de cianobacteria en el lago de Atitlán [Tesis de maestría no publicada]. Universidad de San Carlos de Guatemala.

Gross, A., Turner, B. L., Goren, T., Berry, A., & Angert, A. (2016). Tracing the sources of atmospheric phosphorus deposition to a tropical rain forest in Panama using stable oxygen isotopes. Environmental Science and Technology 50(3), 1147-1156. https://doi.org/10.1021/acs.est.5b04936

Hargan, K. E., Paterson, A. M., & Dillon, Peter J. (2011). A total phosphorus budget for the Lake of the Woods and the Rainy River catchment. Journal of Great Lakes Research 37, 753-763. https://doi.org/10.1016/j.jglr.2011.09.001

Hofhansl, F., Wanek, W., Drage, S., Huber, W., Weissenhofer, A., & Richter, A. (2011). Topography strongly affects atmospheric deposition and canopy exchange processes in different types of wet lowland rainforest, Southwest Costa Rica. Biogeochemistry, 106(3), 371-396. https://doi.org/10.1007/s10533-010-9517-3

Instituto Nacional de Estadística. (2012). Caracterización República de Guatemala. Gobierno de Guatemala.

Instituto de Sismología, Vulcanología, Meteorología e Hidrología. (2016). Boletín Climático 2016-03, 2016-04, 2016-09, 2016-10 y 2016-11 (2016). Departamento de Servicios de Investigaciones Climáticas.

Jassby, A. D., Reuter, J. E., Axler, A. P., Goldman, C. R., & Hackley, V. S. (1994). Atmospheric deposition of nitrogen and phosphorus in the annual nutrient load of Lake Tahoe (California-Nevada). Water Resources Research, 30(7), 2207-3316. https://doi.org/10.1029/94WR00754

Kamphake, J., Hannah, S. A., & Cohen, J. M. (1967). Automated analysis for nitrate by hydrazine reduction. Water Research, 1(3), 205-216. https://doi.org/10.1016/0043-1354(67)90011-5

Kunimatsu, T., & Sudo, M. (2006). Long-term fluctuation and regional variation of nutrient loads from the atmosphere to lakes. Water, Science & Technology, 53(2), 53-61. https://doi.org/10.2166/wst.2006.038

Li, Y., Acharya, K., Stone, M. C., Yu, Z., Young, M. H., & Shafer, D. S. (2011). Spatiotemporal patterns in nutrient loads, nutrient concentrations, and algal biomass in Lake Taihu, China. Lake and Reservoir Management, 27(4), 298-309. https://doi.org/10.1080/07438141.2011.610560

Liddicoat, M. I., Tibbits, S., & Butler, E. (1975). The determination of ammonia in seawater. Limnology and Oceanography, 20(1), 131-132. https://doi.org/10.4319/lo.1975.20.1.0131

Mahowald, N., Jickells, T. D., Baker, A. R., Artaxo, P., Benitez‐Nelson, C. R., Bergametti, G., Bond, T. C., Ying, C., Cohen, D. D., Barak, H., Kubilay, N., Losno, R., Luo, C., Maenhaut, W., McGee, K. A., Okin, G. S., Siefert, R. L., & Tsukuda, S. (2008). Global distribution of atmospheric phosphorus sources, concentrations and deposition rates, and anthropogenic impacts. Global Biogeochemical Cycles, 22(4), 1-19. https://doi.org/10.1029/2008GB003240

Martínez Fausto, M. M. (2018). Relación del fitoplancton y el zooplancton en los sitios de Santiago Atitlán y Centro, Weiss G del Lago de Atitlán durante los años 2013 y 2014 [Tesis de Licenciatura, Universidad de San Carlos de Guatemala]. https://biblioteca-farmacia.usac.edu.gt/Tesis/B286.pdf

Matson, P. A., McDowell, W. H., Townsend, A. R., & Vitousek, P. M. (1999). The globalization of N deposition: Ecosystem consequences in tropical environments. Biogeochemistry, 46, 67-83. https://doi.org/10.1023/A:1006152112852

Morales, J. A., Albornoz, A., Socorro, E., & Morillo, A. (2001). An estimation of the nitrogen and phosphorus loading by wet deposition over Lake Maracaibo, Venezuela. Water, Air, and Soil Pollution, 128(3), 207-221. https://doi.org/10.1023/A:1010347913832

Murphy, J., & Riley, J. P. (1962) A modified single solution method for the determination of phosphate in natural waters. Analitica Chimica Acta, 27, 31-36. https://doi.org/10.1016/S0003-2670(00)88444-5

Newhall, C. G., Paull, C. K., Bradbury, J. P., Higueragundy, A., Poppe, L. J., Self, S., & Ziagos, J. (1987). Recent geologic history of Lake Atitlan, a caldera lake in Western Guatemala. Journal of Volcanology and Geothermal Research, 33, 81-107. https://doi.org/10.1016/0377-0273(87)90055-2

Paerl, H. W., Fulton,R. S., Moisander, P. H., Dyble, J. (2001). Harmful freshwater algal blooms, with an emphasis on cyanobacteria. The Scientific World, 1, 76-113. https://doi.org/10.1100/tsw.2001.16

Phoenix, G. K., Hicks, W., Cinderby, S., Kuylenstierna, J., Stock, W., Dentener, F., & Ineson, P. (2006). Atmospheric nitrogen deposition in world biodiversity hotspots: The need for a greater global perspective in assessing N deposition impacts. Global Change Biology, 12(3), 470-476. https://doi.org/10.1111/j.1365-2486.2006.01104.x

Ponette-González, A. G., Weathers, K. C., & Curran, L. M. (2010). Tropical land-cover change alters biogeochemical inputs to ecosystems in a Mexican montane landscape. Ecological Applications, 20, 1820-1837. https://doi.org/10.1890/09-1125.1

Ponette-González, A. G., Curran, L. M., Pittman, A. L., Carlson, K. M., Steele, B. G., Ratnasari, D., Mujiman, Weathers, K. C. (2016). Biomass burning drives atmospheric nutrient redistribution within forested peatlands in Borneo. Environmental Research Letters, 11, Artículo 085003. https://doi.org/10.1088/1748-9326/11/8/085063

Porter, E. M., Bowman, W. D., Clark, C. M., Compton, J. E., Pardo, L. H., & Soong, J. L. (2013). Interactive effects of anthropogenic nitrogen enrichment and climate change on terrestrial and aquatic biodiversity. Biogeochemistry, 114, 93-120. https://doi.org/10.1007/s10533-012-9803-3

R Core Team. (2017). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. https://www.R-project.org/

Rejmankova, E., Komárek, J., Dix, M., Komárková, J., & Girón, N. (2011). Cyanobacterial blooms in Lake Atitlan, Guatemala. Limnologia, 41(4), 296-312. https://doi.org/10.1016/j.limno.2010.12.003

Reyes Morales, F., Ujpan, D., & Valiente, S. (2018). Batimetría y análisis morfométrico del lago de Atitlán (Guatemala). Revista Científica, 27(2), 48-58.

https://doi.org/10.54495/Rev.Cientifica.v27i2.70

Richon, C., Dutay, J. C., Dulac, F., Wang, R., & Balkanski, Y. (2018). Modeling the biogeochemical impact of atmospheric phosphate deposition from desert dust and combustion sources to the Mediterranean Sea. Biogeosciences, 15, 2499-2524. https://doi.org/10.5194/bg-15-2499-2018

Romero-Oliva, C. S., Contardo-Jara, V., Block, T., & Pflugmacher, S. (2014). Accumulation of microcystin congeners in diferent aquatic plants and crops - A case study from Lake Amatitlán, Guatemala. Ecotoxicology and Environmental Safety, 102, 121-128. https://doi.org/10.1016/j.ecoenv.2014.01.031

Solórzano, L. (1969). Determination of ammonia in natural waters by the phenol hypochlorite method. Limnology and Oceanography, 14(5), 799-801. https://doi.org/10.4319/lo.1969.14.5.0799

Tamatamah, R. A., Hecky, R. E., & Duthie, H. (2005). The atmospheric deposition of phosphorus in Lake Victoria (East Africa). Biogeochemistry, 73, 325-344. https://doi.org/10.1007/s10533-004-0196-9

Tipping, E., Benham, S., Boyle, J. F., Crow, P., Davies, J., Fischer, U., Guyatt, H., Helliwell, R., Jackson-Blake, L., Lawlor, A. J., Monteith, D.T., Rowe, E. C. , & Toberman, H. (2014). Atmospheric deposition of phosphorus to land and freshwater, Environmental Science: Processes and Impacts, 16, 1608-1617.

https://doi.org/10.1039/C3EM00641G

van Tuylen, S., Dix, M., García, J., Bocel, J., Ajcalón, H., López, D., & Chumil, V. (2015). Evaluación del efecto de la calidad del agua sobre la distribución espacio- temporal de las comunidades de macroinvertebrados acuáticos como indicadores de la calidad ecológica de dos ríos de la Cuenca del Lago Atitlán, Sololá (Proyecto FODECYT No. 02-2013). Consejo Nacional de Ciencia y Tecnología, Secretaría Nacional de Ciencia y Tecnología.

Wang, R., Goll, D., Balskanski, Y., Haughlustaine, D., Boucher, D., Clais, P., Janssens, I., Penuelas, J., Guenet, B., Sardans, J., Bopp, L., Vulchard, N., Zhou, F., Bengang, L., Piao, S., Peng, S., Huang, Y., & Tao, S. (2017). Global forest carbon uptake due to nitrogen and phosphorus deposition from 1850 to 2100. Global Change Biology, 23(11), 4854-4872. https://doi.org/10.1111/gcb.13766

Weiss, C. M. (1971). Water quality investigations in Guatemala. Lake Atitlán 1968-1970. University of North Carolina y ERIS.

Imagen del Lago de Atitlan

Published

2022-06-09

How to Cite

Dix, M. A., Gomez, S., Garcia-Oliva, O. F., Dix, M. W., Romero-Oliva, C. S., & Garcia-Polo , J. (2022). Input of Nitrogen and Phosphorus to Lake Atitlán (Guatemala) via atmospheric deposition. Ciencia, Tecnología Y Salud, 9(1), 6–18. https://doi.org/10.36829/63CTS.v9i1.1043

Issue

Section

Artículos científicos