Vías moleculares patogénicas del linfoma T/NK extranodal de tipo nasal asociadas con virus de Epstein Barr: Revisión narrativa
DOI:
https://doi.org/10.36829/63CTS.v8i2.948Palabras clave:
Síndrome linfoproliferativo, herpesvirus, oncogénesis, evasión inmune, epigenéticaResumen
El virus de Epstein Barr (VEB) se encuentra presente en el 100% de los casos de linfoma T/NK extranodal de tipo nasal (ENKTL) y juega un papel importante en la etiopatogenia de esta enfermedad. El objetivo de esta revisión es actualizar el conocimiento de las vías moleculares genéticas y epigenéticas utilizadas por el VEB en la oncogenesis del ENKTL. Para ello se realizó una revisión de la literatura, en las bases de datos de PubMed y Google Scholar, sobre los mecanismos que utilizan las proteínas virales como la proteína de membrana latente (LMP1) y el antígeno nuclear Epstein Barr 1 (EBNA1) para activar proteínas antiapoptóticas del huésped y proteínas relacionadas a proliferación celular, a través de las vías moleculares JAK/STAT (Janus quinasas/señales de transducción y activación de proteínas de transcripción), NF-κB (el factor nuclear potenciador de las cadenas ligeras kappa de las células B activadas) EZHZ2 (Enhancer of Zeste 2 Polycomb repressive Complex 2) y PI3K/Akt (Fosfoinositido 3 quinasa/proteína quinasa B); también se revisó el papel de las proteínas virales BNLF2a, BILF y BDLF3 en la evasión inmune del virus. También LMP1 aumenta la expresión de PDL-1 (ligando de la muerte celular programada), contribuyendo a la disminución de la respuesta inmunológica. A nivel epigenético se abordan los cambios del perfil de metilación en las áreas promotoras de genes supresores de tumor y se explica la función de los miARN de VEB que participan inhibiendo genes supresores de tumor o activando genes que aumentan la proliferación.
Descargas
Citas
Alcami, A. (2003). Viral mimicry of cytokines, chemokines and their receptors. Nature Reviews Immunology, 3(1), 36-50. https://doi.org/10.1039/nri980 DOI: https://doi.org/10.1038/nri980
Avilés, A. (2015). Nasal NK/T-cell lymphoma. A comparative analysis of a Mexican population with the other populations of Latin-America. Mediterranean Journal of Hematology and Infectious Diseases 7(1):e2015052. DOI: https://doi.org/10.4084/mjhid.2015.52
https://doi.org/10.4084/mjhid.2015.052. DOI: https://doi.org/10.4084/mjhid.2015.052
Bhaduri-McIntosh, S., Landry, M. L., Nikiforow, S., Rotenberg, M., El-Guindy, A., & Miller, G. (2007). Serum IgA antibodies to Epstein–Barr virus (EBV) early lytic antigens are present in primary EBV infection. Journal of Infectious Disease, 195, 483-492. https://doi.org/10.1086/510916 DOI: https://doi.org/10.1086/510916
Bowie, A. G., & Unterholzner, L. (2008). Viral evasion and subversion of pattern-recognition receptor signaling. Nature Review Immunology, 8(12), 911-922. https://doi.org/10.1038/nri2436 DOI: https://doi.org/10.1038/nri2436
Campo, E., Swerdlow, S. H., Harris, N. L., Pileri, S., Stein, H., & Jaffe, E. S. (2011). The 2008 WHO classification of lymphoid neoplasms and beyond: evolving concepts and practical applications. Blood, 117(19), 5019–5032. https://doi.org/10.1182/blood-2011-01-293050 DOI: https://doi.org/10.1182/blood-2011-01-293050
Chang, Y., Cui, M., Fu, X., Zhang, L., Li, X., Li, L., Wu, J., Sun, Z., Zhang 1, X., Li 1, Z., Nan, F., Yan, J., & Zhang, M. (2019). MiRNA-155 regulates lymphangiogenesis in natural killer/T-cell lymphoma by targeting BRG1. Cancer Biology & Therapy, 20(1), 31-41. https://doi.org/10.1080/15384047.2018.1504721 DOI: https://doi.org/10.1080/15384047.2018.1504721
Chen,Y. W., Guo, T., Shen, L.,Wong, K. Y., Tao Q., Choi, W. W., & Srivastava, G. (2015). Receptor-type tyrosine-protein phosphatase kappa directly targets stat3 activation for tumor suppression in nasal NK/T-cell lymphoma. Blood, 125, 1589-1600. https://doi.org/10.1182/blood-2014-07-588970 DOI: https://doi.org/10.1182/blood-2014-07-588970
Cohen, J. I., Iwatsuki, K., Ko, Y. H., Kimura, H., Manoli, I., Ohshima, K., Pittaluga, S., Quintanilla-Martinez, L., & Jaffe, E. S. (2020). Epstein-Barr virus NK and T cell lymphoproliferative disease: report of a 2018 international meeting. Leukemia & Lymphoma, 61(4), 808-819. https://doi.org/10.1080/10428194.2019.1699080 DOI: https://doi.org/10.1080/10428194.2019.1699080
Coşkun, O., Yazici, E., Şahiner, F., Karakaş, A., Kiliç, S., Tekin, M., Artuk, C., Yammanel, L., &
Beşirbellioğlu, B. A. (2017). Cytomegalovirus and Epstein-Barr virus reactivation in the intensive care unit. Medizinische Klinik, Intensivmedizin und Notfallmedizin, 112(3), 239-245. https://doi.org/10.1007/s00063-016-0198-0 DOI: https://doi.org/10.1007/s00063-016-0198-0
Crombie, J. L., & LaCasce, A. S. (2019). Epstein Barr virus associated B-cell
lymphomas and iatrogenic lymphoproliferative disorders. Frontiers in Oncology, 9, 109. https://doi.org/10.3389/fonc.2019.00109 DOI: https://doi.org/10.3389/fonc.2019.00109
de Arruda, J., Abrantes, T. C., Cunha, J., Roza, A., Agostini, M., Abrahão, A. C., Canedo, N., Ramos, D. D., Milito, C. B., Pontes, F., Pontes, H., Barra, M. B., Zanella, V. G., Martins, M., Martins, M. D., Israel, M. S., Freire, N. A., Barreto, M., Sánchez-Romero, C., Carlos, R., … de Andrade, B. (2021). Mature T/NK-cell lymphomas of the oral and maxillofacial region: A multi-institutional collaborative study. Journal of Oral Pathology & Medicine, 50(6), 548-557. https://doi.org/10.1111/jop.13205 DOI: https://doi.org/10.1111/jop.13205
de Mel, S., Hue, S. S.-S., Jeyasekharan, A. D., Chng, W.-J., & Ng, S.-B. (2019).
Molecular pathogenic pathways in extranodal NK/T cell lymphoma. Journal of Hematology & Oncology, 12(1), 33. https://doi.org/10.1186/s13045-019-0716-7 DOI: https://doi.org/10.1186/s13045-019-0716-7
de Mel, S., Soon, G. S.-T., Mok, Y., Chung, T.-H., Jeyasekharan, A. D., Chng, W.-J., & Ng, S.-B. (2018). The genomics and molecular biology of natural killer/T-cell lymphoma: Opportunities for translation. International Journal of Molecular Science, 19, 1931. https://doi.org/10.3390/ijms19071931 DOI: https://doi.org/10.3390/ijms19071931
de Mel, S., Tan, J. Z.-C., Jeyasekharan, A. D., Chng, W.-J., & Ng, S.-B. (2019). Transcriptomic abnormalities in Epstein Barr virus associated T/NK lymphoproliferative disorders. Frontiers in Pediatrics, 6, 355. https://doi.org/10.3389/fped.2018.00405 DOI: https://doi.org/10.3389/fped.2018.00405
Dobashi, A., Tsuyama, N., Asaka, R., Togashi, Y., Ueda, K., Sakata, S., Baba, S., Sakamoto, K., Hatake, K., & Takeuchi K. (2016). Frequent BCOR aberrations in extranodal NK/T-cell lymphoma, nasal type. Genes Chromosomes Cancer, 55(5), 460-471. https://doi.org/10.1002/gcc.22348 DOI: https://doi.org/10.1002/gcc.22348
Du, L., Zhang, L., Li, L., Li, X., Yan, J., Wang, X., Fu, X., Sun, Z., Zhang, X., Li, Z., Wu, J., Yu, H., Chang, Y., Zhou, Z., Nan, F., Wu, X., Tian, L., & Zhang, M. (2020). Effective treatment with PD-1 antibody, chidamide, etoposide, and thalidomide (PCET) for relapsed/refractory natural killer/T-cell lymphoma: A report of three cases. OncoTargets and Therapy, 13, 7189-7197. https://doi.org/10.2147/OTT.S262039 DOI: https://doi.org/10.2147/OTT.S262039
Farrell, P. J. (2019) Epstein-Barr virus and cancer. Annual Review of Pathology, 24(14), 29-53. https://doi.org/10.1146/annurev-pathmechdis-012418-013023 DOI: https://doi.org/10.1146/annurev-pathmechdis-012418-013023
Flavell, J. R., Baumforth, K. R. N., Wood, V. H. J., Davies, G. L., Wei, W., Reynolds, G., Morgan, S., Boyce, A., Kelly, G. L., Young, L., & Murray, P. G. (2008). Down-regulation of the TGF-beta target gene, PTPRK, by the Epstein-Barr virus–encoded EBNA1 contributes to the growth and survival of Hodgkin lymphoma cells. Blood, 111(1), 292-301. https://doi.org/10.1182/blood-2006-11-059881 DOI: https://doi.org/10.1182/blood-2006-11-059881
Fu, L., Gao, Z., Zhang, X., Tsang, Y. H., Goh, H. K., Geng, H., Shimizu, N., Tsuchivama, J., Srivastava, G., & Tao, Q. (2009). Frequent concomitant epigenetic silencing of the stress‐responsive tumor suppressor gene CADM1, and its interacting partner DAL‐1 in nasal NK/T‐cell lymphoma. International Journal of Cancer, 124, 1572-1578. https://doi.org/10.1002/ijc.24123 DOI: https://doi.org/10.1002/ijc.24123
Gao, F., He, S., & Jin, A. (2020). MiRNAs and lncRNAs in NK cell biology and NK/T-cell lymphoma. Genes & diseases, 8(5), 590-602. https://doi.org/10.1016/j.gendis.2020.08.006 DOI: https://doi.org/10.1016/j.gendis.2020.08.006
Goade, D. E., Nofchissey, R. A., Kusewitt, D. F., Hjelle, B., Kreisel, J., Moore, J., & Lyons, C. R. (2001). Ultraviolet light induces reactivation in a murine model of cutaneous herpes simplex virus-1 infection. Photochemistry and Photobiology, 74(1), 108-114. https://doi.org/10.1562/0031-8655(2001)074<0108:uliria>2.0.co;2 DOI: https://doi.org/10.1562/0031-8655(2001)074<0108:ULIRIA>2.0.CO;2
Griffin, B. D., Verweij, M. C., & Wiertz, E. J. H. J. (2010). Herpesviruses and immunity: The art of evasion. Veterinary Microbiology, 16,143(1), 89-100. https://doi.org/10.1016/j.vetmic.2010.02.017 DOI: https://doi.org/10.1016/j.vetmic.2010.02.017
Gruhne, B., Sompallae, R., & Masucci. M, G. (2009) Three Epstein–Barr virus latency proteins independently promote genomic instability by inducing DNA damage, inhibiting DNA repair and inactivating cell cycle checkpoints. Oncogene, 28(45), 3997-4008. https://doi.org/10.1038/onc.2009.258 DOI: https://doi.org/10.1038/onc.2009.258
Han, L., Liu, F., Li, R., Li, Z., Chen, X., Zhou, Z., Zhang, X., Hu, T., Zhang, Y., Young, K., Sun, S., Wen, J., & Zhang, M. (2014). Role of programmed death ligands in effective T-cell interactions in extranodal natural killer/T-cell lymphoma. Oncology Letter, 8(4), 1461-1469. https://doi.org/10.3892/ol.2014.2356 DOI: https://doi.org/10.3892/ol.2014.2356
Hansen, T. H., & Bouvier, M. (2009). MHC class I antigen presentation: learning from viral evasion strategies. Nature Review Inmunology,1, 9(7), 503-513. https://doi.org/10.1038/nri2575 DOI: https://doi.org/10.1038/nri2575
Haverkos, B., M., Pan, Z., Gru, A., Freud, A., Rabinovitch, R., Welliver, M., Brad, O., Barrionuevo, C., Baiocchi, R. A., Rochford, R., & Porcu, P. (2016). Extranodal NK/T cell lymphoma, nasal type (ENKTL-NT): An update on epidemiology, clinical presentation, and natural history in North American and European cases. Current Hematologic Malignancy Reports, 11(6), 514-527. https://doi.org/10.1007/s11899-016-0355-9 DOI: https://doi.org/10.1007/s11899-016-0355-9
Hialgrim, H., Friborg, J., & Melbye, M. (2007). The epidemiology of EBV and its association with malignant disease. In: A. Arvin, et al., editors. Human Herpesviruses: Biology, Therapy, and Immunoprophylaxis (Chapter 53). Cambridge University.
Hislop, A. D., Ressing, M. E., van Leeuwen, D., Pudney V. A., Horst, D., Koppers-Lalic, D., Croft, N.P., Neefjes, J.J., Rickinson, A.B., & Wiertz, E. J. H. J. (2007). A CD8+ T cell immune evasion protein specific to Epstein-Barr virus and its close relatives in Old World primates. Journal of Experimental Medicine, 204, 1863-1873. https://doi.org/10.1084/jem.20070256 DOI: https://doi.org/10.1084/jem.20070256
Hong, H., Huang, H., Fang, X., Wang, Z., Ye, S., Zhang, H., Huang, Y., Guo, H., Chen, X., Liang, Ch., Pu, X., Cao, Y., Lin, S., Li, X., Ren, Q., Liu, Q., & Lin, T. (2019). A prognostic index for nasal-type early-stage extranodal natural killer/T-cell lymphoma: A multicenter study. American Journal of Hematology, 94(5), E122-E124. https://doi.org/10.1002/ajh.25426 DOI: https://doi.org/10.1002/ajh.25426
Horst, D., Van Leeuwen, D., Croft, N. P., Garstka, M. A., Hislop, A. D., Kremmer, E., Rickinson, a. B., Wiertz, E.J.H.J., & Ressing, M. E. (2009). Specific targeting of the EBV lytic phase protein BNLF2a to the transporter associated with antigen processing results in impairment of HLA class I-restricted antigen presentation. Journal of Immunology, 182, 2313-2324. https://doi.org/10.4049/jimmunol.0803218 DOI: https://doi.org/10.4049/jimmunol.0803218
Horst, D., Burrows, S. R., Gatherer, D., van Wilgenburg, B., Bell, M. J., Boer, I. G., Ressing, M.E., & Wiertz, E. J. (2012). Epstein-Barr virus isolates retain their capacity to evade T cell immunity through BNLF2a despite extensive sequence variation. Journal of Virology, 86(1), 572-577. https://doi.org/10.1128/JVI.05151-11 DOI: https://doi.org/10.1128/JVI.05151-11
Huang, D., Song, T. L., Nairismägi, M. L., Laurensia, Y., Pang, W. L., Zhe, D., Wong, E., Wijaya, G. G., Tan, J., Tan, S. H., Lim, J. Q., Chia, B., Chan, J. Y., Tang, T., Somasundaram, N., Cheng, C. L., Politz, O., Liu, N., Lim, S. T., & Ong, C. K. (2020). Evaluation of the PIK3 pathway in peripheral T-cell lymphoma and NK/T-cell lymphoma. British Journal of Haematology, 189(4), 731-744. https://doi.org/10.1111/bjh.16435 DOI: https://doi.org/10.1111/bjh.16435
Huang, L., Liu, D., Wang, N., Ling, S., Tang, Y., Wu, J., Hao, L., Luo, H., Hu, X., Sheng, L., Zhu, L., Wang, D., Luo, Y., Shang, Z., Xiao, M., Mao, X., Zhou, K., Cao, L., Dong, L., Zheng, X., Suio, P., … Wang, Q. F. (2018). Integrated genomic analysis identifies deregulated JAK/STAT-MYC-biosynthesis axis in aggressive NK-cell leukemia. Cell Research, 28(2), 172-186. https://doi.org/10.1038/cr.2017.146 DOI: https://doi.org/10.1038/cr.2017.146
Huang, Y., de Reynies, A., de Leval, L., Ghazi, B., Martin-Garcia, N., Travert, M., Bosq, J., Brière, J., Petit, B., Thomas, E., Coppo, P., Marafioti, T., Emile, J-F., Delfau-Larue, M-H., Schmitt, C., & Gaulard, P. (2010). Gene expression profiling identifies emerging oncogenic pathways operating in extranodal NK/T-cell lymphoma, nasal type. Blood, 115, 1226-1237. https://doi.org/10.1182/blood-2009-05-221275 DOI: https://doi.org/10.1182/blood-2009-05-221275
Hue, S. S., Oon, M. L., Wang, S., Tan, S. Y., & Ng, S. B. (2020). Epstein-Barr virus-associated T- and NK-cell lymphoproliferative diseases: an update and diagnostic approach. Pathology, 52(1), 111-127. https://doi.org/10.1016/j.pathol.2019.09.011 DOI: https://doi.org/10.1016/j.pathol.2019.09.011
Hui, K. F., Yiu, S., Tam, K. P., & Chiang, A. (2019). Viral-targeted strategies against EBV-associated lymphoproliferative diseases. Frontiers in Oncology, 9, 81. https://doi.org/10.3389/fonc.2019.00081 DOI: https://doi.org/10.3389/fonc.2019.00081
Huynh. J., Chand, A., Gough, D., & Ernst, M. (2019). Therapeutically exploiting STAT3 activity in cancer - using tissue repair as a road map. Nature Review Cancer, 19(2), 82-96. https://doi.org/10.1038/s41568-018-0090-8 DOI: https://doi.org/10.1038/s41568-018-0090-8
Jo, J. C., Kim, M., Choi, Y., Kim, H-J., Kim, J. E., Wan, S., Kim, H., & Cha, H. J. (2017). Expression of programmed cell death 1 and programmed cell death ligand 1 in extranodal NK/T-cell lymphoma, nasal type. Annals of Hematology, 96(1), 25-31.
https://doi.org/10.1007/s00277-016-2818-4 DOI: https://doi.org/10.1007/s00277-016-2818-4
Kanno, H., Kojya, S., Li, T., Ohsawa, M., Nakatsuka, S., Miyaguchi, M., Harabuchi, Y., & Aozasa, K. (2000). Low frequency of HLA-A*0201 allele in patients with Epstein-Barr virus-positive nasal lymphomas with polymorphic reticulosis morphology. International Journal of Cancer, 87(2), 195-199. https://doi.org/10.1002/1097-0215(20000715)87:2<195::AID-IJC6>3.0.CO;2-0 DOI: https://doi.org/10.1002/1097-0215(20000715)87:2<195::AID-IJC6>3.0.CO;2-0
Kim, W. Y., Jung, H. Y., Nam, S. J., Kim, T. M., Heo, D. S., Kim, C. W., & Jeon, Y. K. (2016). Expression of programmed cell death ligand 1 (PD-L1) in advanced stage EBV-associated extranodal NK/T cell lymphoma is associated with better prognosis. Virchows Archives, 469(5), 581-590. https://doi.org/10.1007/s00428-016-2011-0 DOI: https://doi.org/10.1007/s00428-016-2011-0
Kobayashi, H., Nagato, T., Takahara, M., Sato, K., Kimura, S., Aoki, N., Azumi, M., Tateno, M., Harabuchi, Y., & Celis, E. (2008). Induction of EBV–latent membrane protein 1–specific MHC class II–restricted T-cell responses against natural killer lymphoma cells. Cancer Research, 68(3), 901-908. https://doi.org/10.1158/0008-5472.CAN-07-3212 DOI: https://doi.org/10.1158/0008-5472.CAN-07-3212
Koo, G. C., Tan, S. Y., Tang, T., Poon, S. L., Allen, G. E., Tan, L., Chong, S.CH., Ong, W.S., Tay, K., Tao, M., Quek, R., Loong, S., Yeoh, K-W., Yap, S.P., Lee, K.A., Lim, L. CH., Tan, D., Goh, Ch., Cutcutache, I., Yu, W., & Lim, S. T. (2012). Janus kinase 3-activating mutations identified in natural killer/T cell lymphoma. Cancer Discovery, 2(7), 591-597. https://doi.org/10.1158/2159-8290.CD-12-0028 DOI: https://doi.org/10.1158/2159-8290.CD-12-0028
Kwong, Y.-L., Chan, T. S. Y., Tan, D., Kim, S. J., Poon, L.-M., Mow, B., Khong, P-L., Loong, F., Au-Yeung, R., Iqbal, J., Phipps, C., & Tse, E. (2017). PD1 blockade with pembrolizumab is highly effective in relapsed or refractory NK/T-cell lymphoma failing l-asparaginase. Blood, 129(17), 2437-2442. https://doi.org/10.1182/blood-2016-12-756841 DOI: https://doi.org/10.1182/blood-2016-12-756841
Lanier, L. L. (2008). Evolutionary struggles between NK cells and viruses. Nature Review Immunology, 14, 8(4), 259-268. https://doi.org/10.1038/nri2276 DOI: https://doi.org/10.1038/nri2276
Laurini, J. A., Perry, A. M., Boilesen, E., Diebold, J., MacLennan, K. A., Müller-Hermelink, H. K., Nathwani, B. N., Armitage, J. O., & Weisenburge, D. D. (2012). Classification of non-Hodgkin lymphoma in Central and South America: a review of 1028 cases. Blood, 120(24), 4795-4801. https://doi.org/10.1182/blood-2012-07-440073 DOI: https://doi.org/10.1182/blood-2012-07-440073
Lambris, J. D., Ricklin, D., & Geisbrecht, B. V. (2008). Complement evasion by human pathogens. Nature Review Microbiology,1, 6(2),132-42. https://doi.org/10.1038/nrmicro1824 DOI: https://doi.org/10.1038/nrmicro1824
Lee, S., Park, H. Y., Kang, S. Y., Kim, S. J., Hwang, J., & Lee, S., (2015). Genetic alterations of JAK/STAT cascade and histone modification in extranodal NK/T-cell lymphoma nasal type. Oncotarget, 6(19), 17764-17776. https://doi.org/10.18632/oncotarget.3776 DOI: https://doi.org/10.18632/oncotarget.3776
Lehrich, B. M., Goshtasbi, K., Abiri, A., Yasaka, T. M., Papagiannopoulos, P., Tajudeen, B. A., Brem, E. A., & Kuan, E. C. (2021). Treatment modalities and overall survival outcomes for sinonasal extranodal natural killer/T-cell lymphoma. Leukemia & lymphoma, 62(3), 727-730. https://doi.org/10.1080/10428194.2020.1834097 DOI: https://doi.org/10.1080/10428194.2020.1834097
Li, Z., Xia, Y., Feng, L. N., Chen, J. R., Li, H. M., Cui, J., Cai, Q. Q., Kim, K. S., Cai, Q-Q., Sim, K. S., Nairismagi, L., Laurensia, Y., Meah, W. Y., Liu, W-SH., Guo, Y-M, Chen, L-Z., Feng, Q-S., Pang, Ch. P., Chew, S. H., Chen, J., & Bei, J. X. (2016). Genetic risk of extranodal natural killer T-cell lymphoma: a genome-wide association study. Lancet. Oncology, 17(9), 1240-1247. https://doi.org/10.1016/S1470-2045(16)30148-6. DOI: https://doi.org/10.1016/S1470-2045(16)30148-6
Louten, J. (2016). Herpesviruses. Essential Human Virology, 235-256. Elsevier. https://doi.org/10.1016/B978-0-12-800947-5.00013-2 DOI: https://doi.org/10.1016/B978-0-12-800947-5.00013-2
Lubinski, J., Nagashunmugam, T., & Friedman, H. M. (1998). Viral interference with antibody and complement. Seminars in Cell & Developmental Biology, 9(3), 329-337. https://doi.org/10.1006/scdb.1998.0242 DOI: https://doi.org/10.1006/scdb.1998.0242
Lv, K., Li, X., Yu, H., Chen, X., Zhang, M., & Wu, X. (2020). Selection of new immunotherapy targets for NK/T cell lymphoma. American Journal of Translational Research, 12(11), 7034-7047. DOI: https://doi.org/10.1186/s13287-020-01909-y
Ma, H., Shen, L., Yang, H., Gong, H., Du, X., & Li, J. (2021). m6A methyltransferase Wilms' tumor 1-associated protein facilitates cell proliferation and cisplatin resistance in NK/T cell lymphoma by regulating dual-specificity phosphatases 6 expression via m6A RNA methylation. IUBMB Life, 73(1), 108-117. https://doi.org/10.1002/iub.2410 DOI: https://doi.org/10.1002/iub.2410
Mainou, B. A., Everly, D. N., Jr, & Raab-Traub, N. (2007). Unique signaling properties of CTAR1 in LMP1-mediated transformation. Journal of Virology, 81(18), 9680-9692. https://doi.org/10.1128/JVI.01001-07 DOI: https://doi.org/10.1128/JVI.01001-07
Mansfield, S., Dwivedi, V., Byrd, S., Trgovcich, J., Griessl, M., Gutknecht, M., & Cook, C. H. (2016). Broncholaveolar lavage to detect cytomegalovirus infection, latency, and reactivation in immune competent hosts. Journal of Medical Virology, 88(8), 1408-1416. https://doi.org/10.1002/jmv.24472 DOI: https://doi.org/10.1002/jmv.24472
Mao, Y., Wang, J., Zhang, M., Fan, W., Tang, Q., Xiong, S., Tang, X., Xu, J., Wang, L., Yang, Sh., Liu, S., Xu, L., Chen, Y., Xu, L., Yin, R., & Zhu, J. (2017). A neutralized human LMP1-IgG inhibits ENKTL growth by suppressing the JAK3/STAT3 signaling pathway. Oncotarget, 8(7), 10954-10965. https://doi.org/10.18632/oncotarget.14032 DOI: https://doi.org/10.18632/oncotarget.14032
Merlo, A., Turrini, R., Dolcetti, R., Martorelli, D., Muraro, E., Comoli, P., & Rosato, A. (2010). The interplay between Epstein-Barr virus and the immune system: a rationale for adoptive cell therapy of EBV-related disorders. Haematologica, 95(10), 1769-1777. https://doi.org/10.3324/haematol.2010.023689 DOI: https://doi.org/10.3324/haematol.2010.023689
Montes-Mojarro, I. A., Chen, B.-J., Ramirez-Ibarguen, A. F., Quezada-Fiallos, C. M., Pérez-Báez, W. B., Dueñas, D., Casavilca-Zambrano, S., Ortiz-Mayor, M., Rojas-Bilbao, E., Garcia-Rivello, H., Metrebian, M.F., Narbaitz, M., Barrionuevo, C., Lome-Maldonado, C., Bonzheim, I., Fend, F., Steinhilber, J., & Quintanilla-Martinez, L. (2020). Mutational profile and EBV strains of extranodal NK/T-cell lymphoma, nasal type in Latin America. Modern Pathology, 33(5), 781-791. https://doi.org/10.1038/s41379-019-0415-5 DOI: https://doi.org/10.1038/s41379-019-0415-5
Ng, S.‐B., Selvarajan, V., Huang, G., Zhou, J., Feldman, A.L., Law, M., Kwong, Y-L., Shimizu, N., Kagami, Y., Aozasa, K., Salto-Tellez, M., & Chng, W.‐J. (2011). Activated oncogenic pathways and therapeutic targets in extranodal nasal‐type NK/T cell lymphoma revealed by gene expression profiling. Journal of Pathology, 223, 496-510. https://doi.org/10.1002/path.2823 DOI: https://doi.org/10.1002/path.2823
Ng, S. B., Chung, T. H., Kato, S., Nakamura, S., Takahashi, E., Ko, Y. H., Khoury, J. D., Yin, C. C., Soong, R., Jeyasekharan, A. D., Hoppe, M. M., Selvarajan, V., Tan, S. Y., Lim, S. T., Ong, C. K., Nairismägi, M. L., Maheshwari, P., Choo, S. N., Fan, S., Lee, C. K., … Chng, W. J. (2018). Epstein-Barr virus-associated primary nodal T/NK-cell lymphoma shows a distinct molecular signature and copy number changes. Haematologica, 103(2), 278-287. https://doi.org/10.3324/haematol.2017.180430 DOI: https://doi.org/10.3324/haematol.2017.180430
Palser, A. L., Grayson, N. E., White, R. E., Corton, C., Correia, S., Ba Abdullah, M. M., Watson, S. J., Cotton, M., Arrand, J. R., Murray, P. G., Allday, M. J. Rickinson, A. B., Young, L. S., Farrell, P. J., & Kellam, P. (2015). Genome diversity of Epstein-Barr virus from multiple tumor types and normal infection. Journal of Virology, 89(10), 5222-5237. https://doi.org/10.1128/JVI.03614-14 DOI: https://doi.org/10.1128/JVI.03614-14
Peng, R. J., Han, B. W., Cai, Q. Q., Zuo, X. Y., Xia, T., Chen, J. R., Feng, L-N., Lim, J. Q., Chen, Sh-W., Zeng, M-Sh., Guo, Y-M., Li, B., Xia, X-J., Xia, Y., Laurensia, Y., Chia, B. K. H., Huang, H-Q, Young, K. H, Lim, S. T., Ong, Ch. K., & Bei, J. X. (2019). Genomic and transcriptomic landscapes of Epstein-Barr virus in extranodal natural killer T-cell lymphoma. Leukemia, 33(6), 1451-1462. https://doi.org/10.1038/s41375-018-0324-5 DOI: https://doi.org/10.1038/s41375-018-0324-5
Petrara, M., Freguja, R., Gianesin, K., Zanchetta, M. & De Rossi, A. (2013). Epstein-Barr virus-driven lymphomagenesis in the context of human immunodeficiency virus type 1 infection. Frontiers in Microbiology, 4, 311. https://doi.org/10.3389/fmicb.2013.00311 DOI: https://doi.org/10.3389/fmicb.2013.00311
Polprasert, C., Takeuchi, Y., Makishima, H., Wudhikarn, K., Kakiuchi, N., Tangnuntachai, N., Assanasen, T., Sitthi, W., Muhamad, H., Lawasut, P., Kongkiatkamon, S., Bunworasate, U., Izutsu, K., Shiraishi, Y., Chiba, K., Tanaka, H., Miyano, S., Ogawa, S., Yoshida, K., & Rojnuckarin, P. (2021). Frequent mutations in HLA and related genes in extranodal NK/T cell lymphomas. Leukemia & Lymphoma, 62(1), 95–103. https://doi.org/10.1080/10428194.2020.1821011 DOI: https://doi.org/10.1080/10428194.2020.1821011
Pudney V. A., Leese A. M., Rickinson A. B., & Hislop A. D. (2005). CD8+ immunodominance among Epstein–Barr virus lytic cycle antigens directly reflects the efficiency of antigen presentation in lytically infected cells. Journal Experimental Medicine, 201, 349-360. https://doi.org/10.1084/jem.20041542 DOI: https://doi.org/10.1084/jem.20041542
Quinn, L. L., Williams, L. R., White, C., Forrest, C., Zuo, J., & Rowe, M. (2015). The missing link in Epstein-Barr virus immune evasion: the BDLF3 gene induces ubiquitination and downregulation of Major Histocompatibility Complex Class I (MHC-I) and MHC-II. Journal of Virology, 90(1), 356-367. https://doi.org/10.1128/JVI.02183-15 DOI: https://doi.org/10.1128/JVI.02183-15
Ressing, M. E., van Gent, M., Gram, A. M., Hooykaas, M. J., Piersma, S. J., & Wiertz, E. J. (2015). Immune evasion by Epstein-Barr virus. Current Topics in Microbiology and Immunology, 391, 355-381. https://doi.org/10.1007/978-3-319-22834-1_12 DOI: https://doi.org/10.1007/978-3-319-22834-1_12
Rickinson, A. B., & Kieff, E. (2007). Epstein-Barr virus. In: D. M. Knipe, & P. M. Howley, editors. Fields Virology (vol 2, 5th ed). Philadelphia: Lippincott Williams and Wilkins, 2655-2700
Rowe, M., & Zuo, J. (2010). Immune responses to Epstein-Barr virus: molecular interactions in the virus evasion of CD8+ T cell immunity. Microbes and Infection, 12(3), 173-181. https://doi.org/10.1016/j.micinf.2009.12.001 DOI: https://doi.org/10.1016/j.micinf.2009.12.001
Sánchez-Romero, C., Paes de Almeida, O., Rendón Henao, J., & Carlos, R. (2019). Extranodal NK/T-cell lymphoma, nasal type in Guatemala: An 86-case series emphasizing clinical presentation and microscopic characteristics. Head and Neck Pathology, 13(4), 624-634. https://doi.org/10.1007/s12105-019-01027-z DOI: https://doi.org/10.1007/s12105-019-01027-z
Sánchez-Romero, C., Bologna-Molina, R., Paes de Almeida, O., Santos-Silva, A. R., Prado-Ribeiro, A. C., Brandão, T. B., & Carlos, R.. Extranodal NK/T cell lymphoma, nasal type: An updated overview. Critical Review in Oncology and Hematology, 2021 159:103237. https://doi.org/10.1016/j.critrevonc.2021.103237 DOI: https://doi.org/10.1016/j.critrevonc.2021.103237
Siouda, M., Frecha, C., Accardi, R., Yue, J., Cuenin, C., Gruffat, H., Manet, E., Herceg, Z., Sylla, B.S., & Tommasino, M. (2014). Epstein-Barr virus down-regulates tumor suppressor DOK1 expression. PLoS Pathogens, 10(5), e1004125. https://doi.org/10.1371/journal.ppat.1004125 DOI: https://doi.org/10.1371/journal.ppat.1004125
Somasundaram, N., Lim, J. Q., Ong, C. K., & Lim, S. T. (2019). Pathogenesis and biomarkers of natural killer T cell lymphoma (NKTL). Journal of Hematology & Oncology, 12(1), 28. https://doi.org/10.1186/s13045-019-0717-6 DOI: https://doi.org/10.1186/s13045-019-0717-6
Song, T. L., Nairismagi, M. L., Laurensia, Y., Lim, J. Q., Tan, J., Li, Z. M., Pang, W-L., Kizhakeyil, A., Wijaya, G-C., Huang, D-Ch., Nagarajan, S., Chia, B.K-H., Cheah, D., Liu, Y-H., Zhang, F., Rao, H-L., Tang, T., Wong, E. K-Y., Bei, J-X., Igbal, J., …Ong, C. K. (2018). Oncogenic activation of the STAT3 pathway drives PD-L1 expression in natural killer/T-cell lymphoma. Blood, 132(11), 1146-1158. https://doi.org/10.1182/blood-2018-01-829424 DOI: https://doi.org/10.1182/blood-2018-01-829424
Stanfield, B. A., & Luftig, M. A. (2017). Recent advances in understanding Epstein-Barr virus. F1000Research, 6, 386. https://doi.org/10.12688/f1000research.10591.1 DOI: https://doi.org/10.12688/f1000research.10591.1
Sun, L., Zhao, Y., Shi, H., Ma, C., & Wei, L. (2015). LMP-1 induces surviving expression to inhibit cell apoptosis through the NF-κB and PI3K/Akt signaling pathways in nasal NK/T-cell lymphoma. Oncology Reports, 33, 2253-2260. https://doi.org/10.3892/or.2015.3847 DOI: https://doi.org/10.3892/or.2015.3847
Swerdlow, S., Campo, E., Pileri, S. A., Lee, N., Harald, S., Reiner, S., Advani, R., Ghielmini, M., Salles, G. A., Zelenetz, A. D., & Jaffe, E. S. (2016). The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood, 127(20), 2365-2390. https://doi.org/10.1182/blood-2016-01-643569 DOI: https://doi.org/10.1182/blood-2016-01-643569
Tsai, M. H., Lin, X., Shumilov, A., Bernhardt, K., Feederle, R., Poirey, R., Koop-Schneider, A., Pereira, B., Almeida, R., & Delecluse, H. J. (2017). The biological properties of different Epstein-Barr virus strains explain their association with various types of cancers. Oncotarget, 8(6), 10238-10254. https://doi.org/10.18632/oncotarget.14380 DOI: https://doi.org/10.18632/oncotarget.14380
Tse, E., & Kwong Y.- L. (2013). How I treat NK/T-cell lymphomas. Blood, 121(25), 4997-5005. https://doi.org/10.1182/blood-2013-01-453233 DOI: https://doi.org/10.1182/blood-2013-01-453233
Wang, Z., Li, L., Su, X., Gao, Z., Srivastava, G. Murray, P. G., Ambinder, R., & Tao, Q. (2012). Epigenetic silencing of the 3p22 tumor suppressor DLEC1 by promoter CpG methylation in non-Hodgkin and Hodgkin lymphomas. Journal Translation Medicine, 10, 209. https://doi.org 10.1186/1479-5876-10-209 DOI: https://doi.org/10.1186/1479-5876-10-209
Wiertz, E. J., Devlin, R., Collins, H. L., & Ressing, M. E. (2007). Herpesvirus interference with major Histocompatibility Complex Class II-restricted T-cell activation. Journal of Virology, 81(9), 4389-4396. DOI: https://doi.org/10.1128/JVI.01525-06
Walton, A. H., Muenzer, J. T., Rasche, D., Boomer, J. S., Sato, B., Brownstein, B. H., Pachot, A., Brrooks, T. L., Deych, E., Shannon, W. D., Green, J.M., Storch, A.G., & Hotchkiss, R. S. (2014). Reactivation of multiple viruses in patients with sepsis. PLoS One, 9(2), e98819. https://doi.org/10.1371/journal.pone.0098819 DOI: https://doi.org/10.1371/journal.pone.0098819
Xiong, J., Cui, B. W., Wang, N., Dai, Y. T., Zhang, H., Wang, C. F., Zhong, H. J., Cheng, S., Ou-Yang, B. S., Hu, Y., Zhang, X., Xu, B., Qian, W. B., Tao, R., Yan, F., Hu, J. D., Hou, M., Ma, X. J., Wang, X., Liu, Y. H., … Zhao, W. L. (2020). Genomic and transcriptomic characterization of natural killer T cell lymphoma. Cancer Cell, 37(3), 403-419.e6. https://doi.org/10.1016/j.ccell.2020.02.005 DOI: https://doi.org/10.1016/j.ccell.2020.02.005
Yamaguchi, M., Suzuki, R., & Oguchi, M. (2018). Advances in the treatment of extranodal NK/T-cell lymphoma, nasal type. Blood, 131(23), 2528-2540. https://doi.org/10.1182/blood-2017-12-791418 DOI: https://doi.org/10.1182/blood-2017-12-791418
Yamanaka, Y., Tagawa, H., Takahashi, N., Watanabe, A., Guo, Y.–M., Iwamoto, K., Yamashita, J., Saitoh, H., Kameoka, Y., Shimizu, N., Ichinohasama, R.,& Sawada, K.-I. (2009). Aberrant overexpression of microRNAs activates AKT signaling via down-regulation of tumor suppressors in natural killer–cell lymphoma/leukemia. Blood, 114 (15), 3265-3275. https://doi.org/10.1182/blood-2009-06-222794 DOI: https://doi.org/10.1182/blood-2009-06-222794
Yan, J., Ng, S.-B., Tay, J. L., Lin, B., Koh T. L., Tan, J., Selvarajan, V., Liu, Sh-Ch., Bi, Ch., Wang, Sh., Choo, Sh-N., Shimizu, N., Huang, G., Yu, Q., & Chng, W. (2013). EZH2 overexpression in natural killer/T-cell lymphoma confers growth advantage independently of histone methyltransferase activity. Blood, 121(22), 4512-4520. https://doi.org/10.1182/blood-2012-08-450494 DOI: https://doi.org/10.1182/blood-2012-08-450494
Yang, Y., Wang, Y., Liu, X., He, X., Zhang, L. L., Wu, G., Qu, B. L., Qian, L. T., Hou, X. R., Zhang, F. Q., Qiao, X. Y., Wang, H., Li, G. F., Zhu, Y., Cao, J. Z., Wu, J. X., Wu, T., Zhu, S. Y., Shi, M., Xu, L. M., … Li, Y. X. (2021). Progression-free survival at 24 months and subsequent survival of patients with extranodal NK/T-cell lymphoma: a China Lymphoma Collaborative Group (CLCG) study. Leukemia, 35(6), 1671-1682. https://doi.org/10.1038/s41375-020-01042-y DOI: https://doi.org/10.1038/s41375-020-01042-y
Ying, J., Li, H., Murray, P., Gao, Z., Chen, Y.-W., Wang, Y., Lee, K. Y., Chan, A. T. C., Ambinder, R. F., Srivastava, G., & Tao, Q. (2007). Tumor-specific methylation of the 8p22 tumor suppressor gene DLC1 is an epigenetic biomarker for Hodgkin, nasal NK/T-Cell and other types of lymphomas, Epigenetics, 2(1), 15-21. https://doi.org/10.4161/epi.2.1.3883 DOI: https://doi.org/10.4161/epi.2.1.3883
Zuo, J., Currin, A., Griffin, B. D., Shannon-Lowe, C., Thomas, W. A., Ressing, M. E., Wiertz, E. J., & Rowe, M. (2009). The Epstein-Barr virus G-protein- coupled receptor contributes to immune evasion by targeting MHC class I molecules for degradation. PLoS Pathology, 5, e1000255.https://doi.org/10.1371/journal.ppat.1000255 DOI: https://doi.org/10.1371/journal.ppat.1000255
Zhou, J., Zhang, C., Sui, X., Cao, S., Tang, F., Sun, S., Wang, S., & Chen, B. (2018). Histone deacetylase inhibitor chidamide induces growth inhibition and apoptosis in NK/T lymphoma cells through ATM-Chk2-p53-p21 signalling pathway. Investigational New Drugs, 36(4), 571-580. https://doi.org/10.1007/s10637-017-0552-y DOI: https://doi.org/10.1007/s10637-017-0552-y
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Fabiola Valvert, Armando Cáceres
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
El autor que publique en esta revista acepta las siguientes condiciones:
- El autor otorga a la Dirección General de Investigación el derecho de editar, reproducir, publicar y difundir el manuscrito en forma impresa o electrónica en la revista Ciencia, Tecnología y Salud.
- La Direción General de Investigación otorgará a la obra una licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional