Calidad del agua en el paisaje de la Ecorregión Lachuá: Comparando arroyos en bosque, milpa y palma africana

Autores/as

  • Oscar Rojas Escuela de Biología, Facultad de Ciencias Químicas y Farmacia, Universidad de San Carlos de Guatemala, Guatemala
  • Carlos Avendaño Escuela de Biología, Facultad de Ciencias Químicas y Farmacia, Universidad de San Carlos de Guatemala, Guatemala
  • Ryan Isakson Department of Geography & Planning, University of Toronto, Canada

DOI:

https://doi.org/10.36829/63CTS.v9i1.921

Palabras clave:

Ríos de primer orden, Elaeis guineensis, ciclo del silicio, agricultura tradicional, bosques ribereños, Franja Transversal del Norte

Resumen

La red hídrica en la Ecorregión Lachuá (EL), Alta Verapaz, Guatemala, alberga una alta biodiversidad y abastece de agua a 44 comunidades mayas. Sin embargo, recientemente se ha visto amenazada por actividades industriales escasamente monitoreadas, incluido el creciente monocultivo de palma africana (Elaeis guineensis Jacq) del cual se desconocen sus impactos en la EL. Este estudio explora la calidad del agua de arroyos en plantaciones de palma africana (P), bosques primarios (B), y sistemas de potrero y milpa (M) en Lachuá. Durante 2015-2016, se tomaron muestras de 13 ríos (5 veces) para medir la temperatura del agua, pH, oxígeno disuelto (OD), conductividad, dureza, demanda química y bioquímica de oxígeno (DQO y DBO) y la concentración de sílice, nitratos, fosfatos, y amoníaco. Varios parámetros mostraron diferencias significativas. P fue 2.7ºC y 1.8ºC más calientes que M y F y portó 1.4mg/L más nitrato que F. F portó 10.8mg/L y 11.8mg/L más sílice que M y P. M mostró temperaturas y concentraciones de sílice intermedias y conductividades 14.8 µS/cm y 8.9 µS/cm menores que P y F. La DQO en M fue 9.9 mg/L y 4.6 mg/L menor que P y F. El aumento de temperatura y la disminución de sílice en P podría deberse a la pérdida de bosques ribereños los cuales amortiguan la temperatura y reciclan el silicio. La presencia de bosque secundarios en M podría explicar las temperaturas y las concentraciones de sílice intermedias resaltando la importancia de los bosques en la red hídrica.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Oscar Rojas, Escuela de Biología, Facultad de Ciencias Químicas y Farmacia, Universidad de San Carlos de Guatemala, Guatemala

Biólogo egresado de la Universidad de San Carlos de Guatemala

MSc. Ecología Aplicada en las Universidades de Poitiers (Francia), Kiel (Alemania) y Coimbra (Portugal).

Ph.D. Ecología de Agua dulce (Freshwater Ecology) en la Universidad de Copenhague

https://orcid.org/0000-0002-0176-9685

Carlos Avendaño, Escuela de Biología, Facultad de Ciencias Químicas y Farmacia, Universidad de San Carlos de Guatemala, Guatemala

Escuela de Biología, Facultad de Ciencias Químicas y Farmacia, Universidad de San Carlos de Guatemala, Guatemala y Grupo de Ciencias de la Tierra y Resiliencia Planetaria, Ciudad de Guatemala

Citas

Airaksinen, S., Heiskanen, M.-L., & Heinonen-Tanski, H. (2007). Contamination of surface run-off water and soil in two horse paddocks. Bioresource Technology, 98(9), 1762-1766. https://doi.org/10.1016/J.BIORTECH.2006.07.032

Alonso-Fradejas, A. (2018). The rise of agro-extractive capitalism: Insights from Guatemala in the early 21st century. Doctoral Thesis. International Institute of Social Studies, Erasmus University.

Anzecc, & Armcanz. (2000). Australian and New Zealand Guidelines for Fresh and Marine Water Quality The Guidelines Australian and New Zealand Environment and Conservation Council Agriculture and Resource Management Council of Australia and New Zealand. https://www.sea.gob.cl//sites/default/files/migration_files/Normas_secundarias/Anexo_documental/Australia/Agua/AU-AG-01-NWQMS.pdf

Avendaño, C, Avendaño, C., García, M., Cajas, M., & De León, K. (2005). Dinámica del uso de la tierra y conservación de los Recursos Naturales de la Eco-región Lachua. In Consejo Nacional de Ciencia y Tecnología, Escuela de Biología, Universidad de San Carlos de Guatemala. Recuperado de http://glifos. concyt. gob. gt/digital/fodecyt/fodecyt (Vol. 202003).

Avendaño, Carlos, Hervas, A., & Rojas, O. (2019). Effects of land use on water quality in first-order streams across tropical rainforest, milpa agriculture, and oil palm farms in the Lachuá Ecoregion, Guatemala: preliminary results. Working Paper (November 15, 2019). Toronto: Lachuá Socio-Ecological System.

Ávila, R. (2004). Estudio base para el programa de monitoreo de la vegetación en la zona de influencia del Parque Nacional Laguna Lachuá. Informe Final de Tesis, Escuela de Biología, USAC. Guatemala.

Ávila, R., Cajas, J., Grajeda, A., Machuca, O., & Benítez, L. (2005). Aves y murciélagos como dispersores de semillas en tres etapas sucesionales de la Ecorregión Lachuá, Alta Verapaz, Guatemala. Informe Final de Investigación. Facultad de Ciencias Químicas y Farmacia. Universidad de San Carlos de Guatemala. Guatemala, Guatemala.

Barreto, B. (2018, November 27). Guatemala: a tres años del ecocidio en el río La Pasión, el proceso judicial sigue detenido. Series de Mongabay. https://es.mongabay.com/2018/11/palma-africana-en-guatemala/

Bartoli, F. (1983). The Biogeochemical Cycle of Silicon in Two Temperate Forest Ecosystems. Ecological Bulletins, 35, 469-476. https://doi.org/10.2307/20112881

Braak, C. J. F. ter, & Smilauer, P. (2012). Canoco reference manual and user's guide: software for ordination, version 5.0. Microcomputer Power.

Brauman, K. A., Freyberg, D. L., & Daily, G. C. (2012). Potential evapotranspiration from forest and pasture in the tropics: A case study in Kona, Hawai 'i. Journal of Hydrology, 440, 52-61. https://doi.org/https://doi.org/10.1016/j.jhydrol.2012.03.014

Brzezinski, M. A. (2004). The Si:C:N ratio of marine diatoms: Interspecific variability and the effect of some environmental variables. Journal of Phycology, 21(3), 347-357. https://doi.org/10.1111/j.0022-3646.1985.00347.x

Camas Gómez, R., Turrent Fernández, A., Cortes Flores, J. I., Livera Muñóz, M., González Estrada, A., Villar Sánchez, B., López Martínez, J., Espinoza Paz, N., & Cadena Iñiguez, P. (2012). Erosión del suelo, escurrimiento y pérdida de nitrógeno y fósforo en laderas bajo diferentes sistemas de manejo en Chiapas, México. Revista Mexicana de Ciencias Agrícolas, 3(2), 231-243.

https://doi.org/10.29312/remexca.v3i2.1459

Carlson, K. M., Curran, L. M., Ponette-González, A. G., Ratnasari, D., Ruspita, Lisnawati, N., Purwanto, Y., Brauman, K. A., & Raymond, P. A. (2014). Influence of watershed-climate interactions on stream temperature, sediment yield, and metabolism along a land use intensity gradient in Indonesian Borneo. Journal of Geophysical Research: Biogeosciences, 119(6), 1110-1128. https://doi.org/10.1002/2013JG002516

Castañeda, C. (1997). Estudio Florístico en el Parque Nacional Laguna Lachuá, Alta Verapaz, Guatemala. Informe de Tesis Ingeniero Agrónomo, Facultad de Agronomía, USAC, 75.

Chappell, N. A., Tych, W., Yusop, Z., Rahim, N. A., & Kasran, B. (2004). Spatially significant effects of selective tropical forestry on water, nutrient and sediment flows: a modelling-supported review. Past, Present and Future Hydrological Research for Integrated Land and Water Management, 513-532.

https://doi.org/10.1017/CBO9780511535666.027

Chellaiah, D., & Yule, C. M. (2018). Riparian buffers mitigate impacts of oil palm plantations on aquatic macroinvertebrate community structure in tropical streams of Borneo. Ecological Indicators, 95, 53-62. https://doi.org/10.1016/j.ecolind.2018.07.025

Coe, M. T., Latrubesse, E. M., Ferreira, M. E., & Amsler, M. L. (2011). The effects of deforestation and climate variability on the streamflow of the Araguaia River, Brazil. Biogeochemistry, 105(1-3), 119-131. https://doi.org/https://doi.org/10.1007/s10533-011-9582-2

Comte, I., Colin, F., Whalen, J. K., Grünberger, O., & Caliman, J.-P. (2012). Agricultural Practices in Oil Palm Plantations and Their Impact on Hydrological Changes, Nutrient Fluxes and Water Quality in Indonesia: A Review. Advances in Agronomy, 116, 71-124. https://doi.org/10.1016/B978-0-12-394277-7.00003-8

CONAGUA. (2016). Monitoreo de la Calidad del Agua en México. https://www.gob.mx/conagua/documentos/monitoreo-de-la-calidad-del-agua-en-mexico

Dallas, H. (2009). The effect of water temperature on aquatic organisms: a review of knowledge and methods for assessing biotic responses to temperature. Water Research Commission Report KV, 213(09).

Dallas, H., & Ross-Gillespie, V. (2015). Review: Sublethal effects of temperature on freshwater organisms, with special reference to aquatic insects. Water SA, 41(5), 712. https://doi.org/10.4314/wsa.v41i5.15

Department of Irrigation and Drainage. (1989). Tekam Experimental Basin Final Report. https://jps.gov.my/index.php/pages/view/1300

Dislich, C., Keyel, A. C., Salecker, J., Kisel, Y., Meyer, K. M., Auliya, M., Barnes, A. D., Corre, M. D., Darras, K., Faust, H., Hess, B., Klasen, S., Knohl, A., Kreft, H., Meijide, A., Nurdiansyah, F., Otten, F., Pe'er, G., Steinebach, S., … Wiegand, K. (2017). A review of the ecosystem functions in oil palm plantations, using forests as a reference system. Biological Reviews, 92(3), 1539-1569. https://doi.org/10.1111/brv.12295

Doan, T. T., Henry-des-Tureaux, T., Rumpel, C., Janeau, J.-L., & Jouquet, P. (2015). Impact of compost, vermicompost and biochar on soil fertility, maize yield and soil erosion in Northern Vietnam: A three year mesocosm experiment. Science of The Total Environment, 514, 147-154. https://doi.org/10.1016/J.SCITOTENV.2015.02.005

Dodds, W. K., & Oakes, R. M. (2008). Headwater Influences on Downstream Water Quality. Environmental Management, 41(3), 367-377. https://doi.org/10.1007/s00267-007-9033-y

Eisermann, K., & Avendaño, C. (2007). Áreas propuestas para la designación como IBA (Área importante para la conservación de aves) en Guatemala, con una priorización para la conservación adentro de las IBAs y una evaluación de las IBAs para aves migratorias Neárticas-Neotropicales. Informe Final a BirdLife International, Quito, Ecuador. Sociedad Guatemalteca de Ornitología, Guatemala.

Escuela de Biología. (2004). Ficha Informativa de los Humedales de Ramsar ( FIR ). In Wetlands: water life and culture. https://conap.gob.gt/wp-content/uploads/2019/09/1623-Ecoregión-Lachua.pdf

FAO. (2020). FAOSTAT Online Statistical Service. http://www.fao.org/faostat/en/#data/QC

Farmer, V. C., Delbos, E., & Miller, J. D. (2005). The role of phytolith formation and dissolution in controlling concentrations of silica in soil solutions and streams. Geoderma, 127(1-2), 71-79. https://doi.org/10.1016/j.geoderma.2004.11.014

Fernandes, J. de F., de Souza, A. L. T., & Tanaka, M. O. (2014). Can the structure of a riparian forest remnant influence stream water quality? A tropical case study. Hydrobiologia, 724(1), 175-185. https://doi.org/https://doi.org/10.1007/s10750-013-1732-1

Ford, A., & Nigh, R. (2016). The Maya Forest Garden: Eight Millennia of Sustainable Cultivation of the Tropical Woodlands. The Maya Forest Garden: Eight Millennia of Sustainable Cultivation of the Tropical Woodlands, 1-260. https://doi.org/10.4324/9781315417936

Ford, D., & Williams, P. D. (2013). Karst hydrogeology and geomorphology. John Wiley & Sons. https://doi.org/10.1002/9781118684986.ch5

Fox, J. (2016). Using the R commander: a point-and-click interface for R. Chapman & Hall. https://socialsciences.mcmaster.ca/jfox/Books/RCommander/.

Gandaseca, S., Rosli, N., Hanafiidris, M., Haruna, O. A., & Mustapha, A. (2015). Effects of converting tropical peat swamp forest into oil palm plantation on water quality. American Journal of Applied Sciences, 12(8), 525-532. https://doi.org/10.3844/ajassp.2015.525.532

García, P., & Méndez, C. (2014). Análisis de la distribución de macroinvertebrados acuáticos a escala detallada en la ecorregion Lachuá, Cobán, Alta Verapaz. Revista Científica, 19(1), 37-46.

https://doi.org/10.54495/Rev.Cientifica.v19i2.155

Goh, K.-J., Härdter, R., & Fairhurst, T. (2003). Fertilizing for maximum return. Oil Palm: Management for Large and Sustainable Yields, 279-306.

Granados, P. (2001). Ictiofauna de la Laguna Lachuá, Parque Nacional Laguna Lachuá, Cobán, Alta Verapaz. Universidad de San Carlos de Guatemala.

GREPALMA. (2018). I Anuario Estadístico. Serviprensa. https://www.grepalma.org/wp-content/uploads/2018/07/GREPALMA_Ints_Anuario_Estadistico.pdf

GREPALMA. (2019). ANUARIO ESTADÍSTICO 2018-2019. https://www.grepalma.org/wp-content/uploads/2020/04/Anuario_estadistico_2018_2019.pdf

Harmel, R. D., Smith, D. R., Haney, R. L., & Dozier, M. (2009). Nitrogen and phosphorus runoff from cropland and pasture fields fertilized with poultry litter. Journal of Soil and Water Conservation, 64(6), 400-412. https://doi.org/10.2489/jswc.64.6.400

Hawkins, C. P., Hogue, J. N., Decker, L. M., & Feminella, J. W. (1997). Channel morphology, water temperature, and assemblage structure of stream insects. Journal of the North American Benthological Society, 16(4), 728-749. https://doi.org/10.2307/1468167

Hernández, S. (2004). Estudio Etnoecológico de las Actividades Agropecuarias, Cacería y Extractivas en dos comunidades Rocja Pontilá y San Benito I de la Ecorregión Lachuá. Fac. de CC. QQ y Farmacia, Universidad de San Carlos [Universidad de San Carlos de Guatemala]. http://biblioteca.usac.edu.gt/tesis/06/06_2294.pdf

Hervas, A. (2019). Land, development and contract farming on the Guatemalan oil palm frontier. The Journal of Peasant Studies, 46(1), 115-141.

https://doi.org/10.1080/03066150.2017.1351435

Islam, M. M. M., Shafi, S., Bandh, S. A., & Shameem, N. (2019). Impact of environmental changes and human activities on bacterial diversity of lakes. In John Wiley & Sons. (Ed.), Freshwater Microbiology: Perspectives of Bacterial Dynamics in Lake Ecosystems (pp. 105-136). Academic Press. https://doi.org/10.1016/B978-0-12-817495-1.00003-7

Keller, C., Guntzer, F., Barboni, D., Labreuche, J., & Meunier, J.-D. (2012). Impact of agriculture on the Si biogeochemical cycle: Input from phytolith studies. Comptes Rendus Geoscience, 344(11-12), 739-746. https://doi.org/10.1016/j.crte.2012.10.004

Kertész, Á., Nagy, L. A., & Balázs, B. (2019). Effect of land use change on ecosystem services in Lake Balaton Catchment. Land Use Policy, 80, 430-438.

https://doi.org/10.1016/j.landusepol.2018.04.005

Kosseva, M. R. (2013). Sources, Characterization, and Composition of Food Industry Wastes. In Food Industry Wastes (pp. 37-60). Elsevier. https://doi.org/10.1016/B978-0-12-391921-2.00003-2

Kuntom, A., Yew Ai, T., Kamaruddin, N., & Chee Beng, Y. (2007). Pesticide Application in the Oil Palm Plantation.

Kurniawan, S., Corre, M. D., Matson, A. L., Schulte-Bisping, H., Utami, S. R., Van Straaten, O., & Veldkamp, E. (2018). Conversion of tropical forests to smallholder rubber and oil palm plantations impacts nutrient leaching losses and nutrient retention efficiency in highly weathered soils. Biogeosciences, 15(16), 5131-5154. https://doi.org/10.5194/bg-15-5131-2018

Li, D. D., Lerman, A., & Mackenzie, F. T. (2011). Human perturbations on the global biogeochemical cycles of coupled Si-C and responses of terrestrial processes and the coastal ocean. Applied Geochemistry, 26, S289-S291. https://doi.org/10.1016/j.apgeochem.2011.03.084

Liberoff, A. L., Flaherty, S., Hualde, P., García Asorey, M. I., Fogel, M. L., & Pascual, M. A. (2019). Assessing land use and land cover influence on surface water quality using a parametric weighted distance function. Limnologica, 74, 28-37. https://doi.org/10.1016/j.limno.2018.10.003

Lorion, C. M., & Kennedy, B. P. (2009). Relationships between deforestation, riparian forest buffers and benthic macroinvertebrates in neotropical headwater streams. Freshwater Biology, 54(1), 165-180. https://doi.org/10.1111/j.1365-2427.2008.02092.x

Luke, S. H., Barclay, H., Bidin, K., Chey, V. K., Ewers, R. M., Foster, W. A., Nainar, A., Pfeifer, M., Reynolds, G., Turner, E. C., Walsh, R. P. D., & Aldridge, D. C. (2017). The effects of catchment and riparian forest quality on stream environmental conditions across a tropical rainforest and oil palm landscape in Malaysian Borneo. Ecohydrology, 10(4), e1827. https://doi.org/10.1002/eco.1827

Mercer, E. V., Mercer, T. G., & Sayok, A. K. (2013). Effects of forest conversions to oil palm plantations on freshwater macroinvertebrates: a case study from Sarawak, Malaysia. Journal of Land Use Science, 9(3), 260-277. https://doi.org/10.1080/1747423X.2013.786149

Monzón, M. (1999). Estudio general de los recursos agua, suelo y del uso de la tierra del parque nacional Laguna Lachuá y su zona de influencia, Cobán, Alta Verapaz. Tesis de Licenciatura, Facultad de Agronomía, Universidad de San Carlos de San Carlos de Guatemala.

Morrill, J. C., Bales, R. C., & Conklin, M. H. (2005). Estimating Stream Temperature from Air Temperature: Implications for Future Water Quality. Journal of Environmental Engineering, 131(1), 139-146. https://doi.org/10.1061/(ASCE)0733-9372(2005)131:1(139)

Obidzinski, K., Andriani, R., Komarudin, H., & Andrianto, A. (2012). Environmental and social impacts of oil palm plantations and their implications for biofuel production in Indonesia. Ecology and Society, 17(1). https://doi.org/http://dx.doi.org/10.5751/ES-04775-170125

Opalinska, B., & Cowling, S. A. (2015). Modelling the movement of biogenic silica from terrestrial vegetation to riverine systems within the continental USA. Ecological Modelling, 312, 104-113. https://doi.org/10.1016/j.ecolmodel.2015.05.012

Oyem, H. H., Oyem, I. M., & Ezeweali, D. (2014). Temperature, pH, Electrical Conductivity, Total Dissolved Solids and Chemical Oxygen Demand of Groundwater in Boji-BojiAgbor/Owa Area and Immediate Suburbs. Research Journal of Environmental Sciences, 8(8), 444-450. https://doi.org/10.3923/rjes.2014.444.450

Pokrovsky, O. S., Schott, J., Kudryavtzev, D. I., & Dupré, B. (2005). Basalt weathering in Central Siberia under permafrost conditions. Geochimica et Cosmochimica Acta, 69(24), 5659-5680. https://doi.org/10.1016/j.gca.2005.07.018

Proyecto Especial para la Seguridad Alimentaria -PESA-. (2005). La regeneración natural en áreas de cultivo. http://www.fao.org/3/a-at777s.pdf

Quezada, M. L., Arroyo-Rodríguez, V., Pérez-Silva, E., & Aide, T. M. (2014). Land cover changes in the Lachuá region, Guatemala: patterns, proximate causes, and underlying driving forces over the last 50 years. Regional Environmental Change, 14(3), 1139-1149. https://doi.org/10.1007/s10113-013-0548-x

Ribeiro, M. C., Pinho, P., Llop, E., Branquinho, C., Sousa, A. J., & Pereira, M. J. (2013). Multivariate geostatistical methods for analysis of relationships between ecological indicators and environmental factors at multiple spatial scales. Ecological Indicators, 29, 339-347. https://doi.org/10.1016/j.ecolind.2013.01.011

RStudio Team. (2016). RStudio: Integrated Development Environment for R (1.1.383).

Sari, F. I. P., Mahardika, R. G., & Roanisca, O. (2019). Water Quality Testing Due to Oil Palm Plantation Activities in Bangka Regency. IOP Conference Series: Earth and Environmental Science, 353(1), 12019. https://doi.org/10.1088/1755-1315/353/1/012019

Schroth, G., Rodrigues, M. R. L., & D'Angelo, S. A. (2006). Spatial patterns of nitrogen mineralization, fertilizer distribution and roots explain nitrate leaching from mature Amazonian oil palm plantation. Soil Use and Management, 16(3), 222-229. https://doi.org/10.1111/j.1475-2743.2000.tb00197.x

SEGEPLAN. (2011). Plan de Desarrollo Integral, Franja Transversal del Norte. file:///C:/Users/oscar/Downloads/DTFTN_T1 (1).pdf

Sheil, D., Casson, A., Meijaard, E., Van Noordwijk, M., Gaskell, J., Sunderland-Groves, J., Wertz, K., & Kanninen, M. (2009). The impacts and opportunities of oil palm in Southeast Asia: What do we know and what do we need to know?

Solano, L. (2015). Palma africana y empresas se expanden aceleradamente a lo largo de la FTN. In Enfoque, Análisis de situación (Vol. 36). http://www.albedrio.org/htm/otrosdocs/comunicados/EnfoqueNo.36-PalmaafricanaFTN-2015.pdf

Song, Z., Wang, H., Strong, P. J., Li, Z., & Jiang, P. (2012). Plant impact on the coupled terrestrial biogeochemical cycles of silicon and carbon: Implications for biogeochemical carbon sequestration. Earth-Science Reviews, 115(4), 319-331. https://doi.org/10.1016/j.earscirev.2012.09.006

State Environmental Conservation Department. (2000). Environmental Impact Assessment (EIA) Guidelines for Oil Palm Plantation Development Third Draft.

Strahler, A. N. (1957). Quantitative analysis of watershed geomorphology. Transactions, American Geophysical Union, 38(6), 913. https://doi.org/10.1029/TR038i006p00913

Street-Perrott, F. A., & Barker, P. A. (2008). Biogenic silica: a neglected component of the coupled global continental biogeochemical cycles of carbon and silicon. Earth Surface Processes and Landforms, 33(9), 1436-1457. https://doi.org/10.1002/esp.1712

Struyf, E., & Conley, D. J. (2009). Silica: an essential nutrient in wetland biogeochemistry. Frontiers in Ecology and the Environment, 7(2), 88-94.

https://doi.org/10.1890/070126

Studinski, J. M., Hartman, K. J., Niles, J. M., & Keyser, P. (2012). The effects of riparian forest disturbance on stream temperature, sedimentation, and morphology. Hydrobiologia, 686(1), 107-117. https://doi.org/10.1007/s10750-012-1002-7

Taylor, M. J. (2007). Militarism and the environment in Guatemala. GeoJournal 2007 69:3, 69(3), 181-198. https://doi.org/10.1007/s10708-007-9108-6

Treguer, P., Nelson, D. M., Van Bennekom, A. J., DeMaster, D. J., Leynaert, A., & Queguiner, B. (1995). The silica balance in the world ocean: a reestimate. Science, 268(5209), 375-379. https://doi.org/10.1126/science.268.5209.375

Wantzen, K. M. (2006). Physical pollution: effects of gully erosion on benthic invertebrates in a tropical clear‐water stream. Aquatic Conservation: Marine and Freshwater Ecosystems, 16(7), 733-749. https://doi.org/10.1002/aqc.813

Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. In https://ggplot2. tidyverse. org. doi (Vol. 10, pp. 973-978). Springer-Verlag. https://doi.org/10.1007/978-3-319-24277-4

Wilkinson, C. L., Yeo, D. C. J., Tan, H. H., Fikri, A. H., & Ewers, R. M. (2019). Resilience of tropical, freshwater fish (Nematabramis everetti) populations to severe drought over a land-use gradient in Borneo. Environmental Research Letters, 14(4), 45008. https://doi.org/10.1088/1748-9326/ab0128

Wilson, J. L., & Everard, M. (2018). Real-time consequences of riparian cattle trampling for mobilization of sediment, nutrients and bacteria in a British lowland river. International Journal of River Basin Management, 16(2), 231-244. https://doi.org/10.1080/15715124.2017.1402778

Witman, S. (2017). World's Biggest Oxygen Producers Living in Swirling Ocean Waters. Eos. https://doi.org/10.1029/2017EO081067

Wüst, R. A. J., & Bustin, R. M. (2003). Opaline and Al-Si phytoliths from a tropical mire system of West Malaysia: abundance, habit, elemental composition, preservation and significance. Chemical Geology, 200(3-4), 267-292. https://doi.org/10.1016/S0009-2541(03)00196-7

cartografia de los puntos de muestreo

Descargas

Publicado

2022-06-13

Cómo citar

Rojas, O., Avendaño, C., & Isakson, R. (2022). Calidad del agua en el paisaje de la Ecorregión Lachuá: Comparando arroyos en bosque, milpa y palma africana. Ciencia, Tecnologí­a Y Salud, 9(1), 19–40. https://doi.org/10.36829/63CTS.v9i1.921

Número

Sección

Artículos científicos