La acelerada búsqueda de candidatos terapéuticos contra SARS-CoV-2, métodos in silico: Revisión

Autores/as

  • Oscar Cobar Facultad de Ciencias Químicas y Farmacia
  • Rodrigo J. Vargas

DOI:

https://doi.org/10.36829/63CTS.v7i3.1002

Resumen

El reposicionamiento de fármacos como la derivatización química, que se han aplicado en los estudios de descubrimiento y diseño de fármacos contra el SARS-CoV-2, dependen del ciclo de vida del virus, las dianas moleculares identificadas y un diseño basado en su estructura e interacciones moleculares. Se realizó una revisión extensa en las bases de datos públicas e institucionales RSCB-Protein Data Bank, ZINC, NCBI (PubMed, PMC), PubChem, Science Direct e instituciones como CDC, NIH y revistas científicas especializadas sobre los avances en la búsqueda de nuevas moléculas contra el nuevo coronavirus basadas en estudios in silico, detectándose más de 40,000 publicaciones sobre SARS-CoV-2 y cerca de 200 relacionadas a dichos estudios, las consideradas más relevantes fueron analizadas e incluidas en este artículo. Su análisis evidencia el avance acelerado de las herramientas computacionales y fortaleza del diseño de fármacos asistido por computadora (in silico approach) para la generación de nuevas moléculas con posibilidad de ser activas contra COVID-19 y presenta las principales dianas moleculares sobre la que actúan estos agentes con potencial antiviral.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Adam, S., Eyupoglu, V., Sarfraz, I., Rasuli, A., & Ali, M (2020). Identification of potent Covid-19 main protease (Mpro) inhibitors from natural polyphenols: An in silico strategy unveils a hope against Corona. Preprints. https://doi.org/10.20944/preprint202003.0333.v1

Bhardwaj, R. (2020). A predictive model for the evolution of COVID-19. Transactions of the Indian National Academy of Engineering, 5, 133-140. https://doi.org/10.1007/s41403-020-00130-w

Bianchi, M., Benvenuto, D., Giovanetti, M., Angeletti, S., Ciccozzi, M., & Pascarella, S. (2020). SARS-CoV-2 envelope and membrane proteins: Differences from closely related proteins linked to cross-species transmission? BioMed Research International. Article 4389089. https://doi.org/10.1155/2020/4389089

Boopathi, S., Poma, A. B., & Kolandaivel, P. (2020). Novel 2019 coronavirus structure, mechanism of action, antiviral drug promises and rule out against its treatment. Journal of Biomolecular Structure and Dynamics. https://doi.org/10.1080/07391102.2020.1758788

Bosch, B. J., van der Zee, R., de Haan, C. A. M., & Rottier, P. J. M. (2003). The Coronavirus spike protein is a class I virus fusion protein: Structural and functional characterization of the fusion core complex. Journal of Virology, 77(16), 8801-8811. https://doi.org/10.1128/JVI.77.16.8801-8811.2003

Bruno, A., Costantino, G., Sartori, L., & Radi, M. (2019). The in silico drug discovery toolbox: Applications in lead discovery and optimization. Current Medicinal Chemistry, 26(21), 3838-3873. https://doi.org/10.2174/0929867324666171107101035

Bzówka, M., Mitusi?ska, K., Raczy?ska, A., Samol, A., Tuszy?ski, J., & Góra, A. (2020). Structural and evolutionary analysis indicate that the SARS-CoV-2 Mpro is a challenging target for small-molecule inhibitor design. International Journal of Molecular Science, 21(9), Article 3099. https://doi.org/10.3390/ijms21093099

Cava, C., Bertoli, G., & Castiglioni, I. (2020). In silico discovery of candidate drugs against Covid-19. Viruses, 12(4), Article 404. https://doi.org/10.3390/v12040404

Chaccour, C., Hamman, F., Ramón-García, S., & Rabinovich, R. (2020). Ivermectin and COVID-19: Keeping rigor in times of urgency. The American Journal of Tropical Medicine and Hygiene, 102(6), 1156-1157. https://doi.org/10.4269/ajtmh.20-0271

Chamdel, V., Raj, S., Rathi, B. & Kumar, D. (2020). In silico identification of potent Covid-19 main protease inhibitors from FDA approved antiviral compounds and active phytochemicals through molecular docking: A drug repurposing approach. Preprints. https://doi.org/10.20944/preprints202003.0349.v1

Chen, C., Zhang, Y., Huang, J., Yin, P., Cheng, Z., Wu, J., … Wang, X. (2020). Favipiravir versus arbidol for COVID-19: A randomized clinical trial. MedRxiv. https://doi.org/10.1101/2020.03.17.20037432

Choudhury, A., & Mukherjee, S. (2020). In silico studies on the comparative characterization of the interactions of SARS?CoV?2 spike glycoprotein with ACE?2 receptor homologs and human TLRs. Journal of Medical Virology, 92(10). https://doi.org/10.1002/jmv.25987

Corrêa, C., Laaksonen, A., & Barroso da Silva, F. L. (2020). On the interactions of the receptor-binding domain of SARS-CoV-1 and SARS-CoV-2 spike proteins with monoclonal antibodies and the receptor ACE2. Virus Research, 285, Article 198021. https://doi.org/10.1016/j.virusres.2020.198021

Durdagi, S. (2020). Virtual drug repurposing study against SARS-CoV-2 TMPRSS2 target. Turkish Journal of Biology, 44(3), 185-191. https://doi.org/10.3906/biy-2005-112

Durojaiye, A. B., Clarke, J.-R. D., Stamatiades, G. A., & Wang, C. (2020). Repurposing cefuroxime for treatment of COVID-19: A scoping review of in silico studies. Journal of Biomolecular Structure & Dynamics. https://doi.org/10.1080/07391102.2020.1777904

Eaaswarkhanth, M., Al Madhoun, A., & Al-Mulla, F. (2020). Could the D614G substitution in the SARS-CoV-2 spike (S) protein be associated with higher COVID-19 mortality? International Journal of Infectious Diseases, 96, 459-460. https://doi.org/10.1016/j.ijid.2020.05.071

Elmezayen, A. D., Al-Obaidi, A., ?ahin, A. T., & Yelekçi, K. (2020). Drug repurposing for coronavirus (COVID-19): In silico screening of known drugs against coronavirus 3CL hydrolase and protease enzymes. Journal of Biomolecular Structure & Dynamics. https://doi.org/10.1080/07391102.2020.1758791

Estrada, E. (2020). Topological analysis of SARS CoV-2 main protease. Chaos: An Interdisciplinary Journal of Nonlinear Science, 30(6), 061102. https://doi.org/10.1063/5.0013029

Erlina, L., Paramita, R. I., Kusuma, W. A., Fadilah, F., Tedjo, A., Pratomo, I. P., ... Yanur, A. (2020). Virtual screening on Indonesian herbal compounds as COVID-19 supportive therapy: Machine learning and pharmacophore modeling approaches. Research Square. https://doi.org/10.21203/rs.3.rs-29119/v1

Farag, A. B., Wang, P., Ahmed, M. S., & Sadek, H. A. (2020). Identification of FDA approved drugs targeting COVID-19 virus by structure-based drug repositioning. ChemRxiv. https://doi.org/10.26434/chemrxiv.12003930.v1

Ganesan, A., Arimondo, P. B., Rots, M. G., Jeronimo, C., & Berdasco, M. (2019). The timeline of epigenetic drug discovery: From reality to dreams. Clinical Epigenetics, 11(1), 174. https://doi.org/10.1186/s13148-019-0776-0

Gao, Y., Yan, L., Huang, Y., Liu, F., Zhao, Y., Cao, L., ... Ge, J. (2020). Structure of RNA-dependent RNA polymerase from COVID-19 virus. Science, 368(6492), 779-782. https://doi.org/10.1126/science.abb7498

Gentile, F., Agrawal, V., Hsing, M., Ton, A.-T., Ban, F., Norinder, U., … Cherkasov, A. (2020). Deep docking: A deep learning platform for augmentation of structure based drug discovery. ACS Central Science, 6(6), 939-949. https://doi.org/10.1021/acscentsci.0c00229

Ghosh, R., Chakraborty, A., Biswas, A., & Chowdhuri, S. (2020). Evaluation of green tea polyphenols as novel corona virus (SARS CoV-2) main protease (Mpro) inhibitors – an in silico docking and molecular dynamics simulation study. Journal of Biomolecular Structure & Dynamics, 1-13. https://doi.org/10.1080/07391102.2020.1779818

Glowacka, I., Bertram, S., Müller, M. A., Allen, P., Soilleux, E., Pfefferle, S., … Pöhlmann, S. (2011). Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response. Journal of Virology, 85(9), 4122-4134. https://doi.org/10.1128/JVI.02232-10

Gonzalez-Paz, L. A., Lossada, C. A., Moncayo, L. S., Romero, F., Paz, J. L., Vera-Villalobos, J. … Alvarado, Y. J. (2020). Theoretical molecular docking study of the structural disruption of the viral 3CL-protease of COVID19 induced by binding of capsaicin, piperine and curcumin Part 1: A comparative study with chloroquine and hydrochloroquine to antimalaric drugs. Research Square, preprint. https://doi.org/10.21203/rs-3-rs-21206/v1

Hall, D. C., & Ji, H.-F. (2020). A search for medications to treat COVID-19 via in silico molecular docking models of the SARS-CoV-2 spike glycoprotein and 3CL protease. Travel Medicine and Infectious Disease, 35, 101646. https://doi.org/10.1016/j.tmaid.2020.101646

Hashem, H. E. (2020). In Silico approach of some selected honey constituents as SARS-CoV-2 main protease (COVID-19) inhibitors. ChemRxiv. https://doi.org/10.26434/chemrxiv.12115359.v2

Hoffmann, M., Hofmann-Winkler, H., & Pöhlmann, S. (2018). Priming time: How cellular proteases arm coronavirus spike proteins. En E. Böttcher-Friebertshäuser, W. Garten & H. D. Klenk (Eds.), Activation of Viruses by Host Proteases (pp. 71-98). Cham: Springer. https://doi.org/10.1007/978-3-319-75474-1_4

Hoffmann, M., Kleine-Weber, H., Krüger, N., Müller, M., Drosten, C., & Pöhlmann, S. (2020). The novel coronavirus 2019 (2019-nCoV) uses the SARS-coronavirus receptor ACE2 and the cellular protease TMPRSS2 for entry into target cells. BioRxiv. https://doi.org/10.1101/2020.01.31.929042

Holshue, M. L., DeBolt, C., Lindquist, S., Lofy, K. H., Wiesman, J., Bruce, H., … Pillai, S. K. (2020). First case of 2019 novel coronavirus in the United States. New England Journal of Medicine, 382(10), 929-936. https://doi.org/10.1056/NEJMoa2001191

Huang, Y., Yang, C., Xu, X.-F., Xu, W., & Liu, S.-w. (2020). Structural and functional properties of SARS-CoV-2 spike protein: Potential antivirus drug development for COVID-19. Acta Pharmacologica Sinica, 41, 1141-1149. https://doi.org/10.1038/s41401-020-0485-4

Hung, H.-C., Ke, Y.-Y., Huang, S. Y., Huang, P.-N., Kung, Y.-A., Chang, T.-Y., … Hsu, J. T.-A. (2020). Discovery of M protease inhibitors encoded by SARS-CoV-2. Antimicrobial Agents and Chemotherapy, 64, Article e200872. https://doi.org/10.1128/AAC.00872-20

Huynh, T., Wang, H., & Luan, B. (2020). In silico exploration of the molecular mechanism of clinically oriented drugs for possibly inhibiting SARS-CoV-2’s main protease. Journal of Physical Chemistry Letters, 11(11), 4413-4420. https://doi.org/10.1021/acs.jpclett.0c00994

Jiménez-Alberto, A., Ribas-Aparicio, R. M., Aparicio-Ozores, G., & Castelán-Vega, J. A. (2020). Virtual screening of approved drugs as potential SARS-CoV-2 main protease inhibitors. Computational Biology and Chemistry, 88, 107325. https://doi.org/10.1016/j.compbiolchem.2020.107325

Jin, Z., Du, X., Xu, Y., Deng, Y., Liu, M., Zhao, Y., … Yang, H. (2020). Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 582(7811), 289-293. https://doi.org/10.1038/s41586-020-2223-y

Jokhakar, P. H., Kalaria, R., & Patel, H. K. (2020). In silico docking studies of antimalarial drug hydroxychloroquine to SARS-CoV proteins: An emerging pandemic worldwide. ChemRxiv. https://doi.org/10.26434/chemrxiv.12488804.v1

Joshi, T., Joshi, T., Sharma, P., Mathpal, S., Pundir, H., Bhatt, V., & Chandra, S. (2020). In silico screening of natural compounds against COVID-19 by targeting Mpro and ACE2 using molecular docking. European Review for Medical and Pharmacological Sciences, 24(8), 4529-4536. https://doi.org/10.26355/eurrev_202004_21036

Joshi, T., Sharma, P., Joshi, T., Pundir, H., Mathpal, S., & Chandra, S. (2020). Structure-based screening of novel lichen compounds against SARS Coronavirus main protease (Mpro) as potentials inhibitors of COVID-19. Molecular Diversity. https://doi.org/10.1007/s11030-020-10118-x

Kadioglu, O., Saeed, M., Greten, H. J., & Efferth, T. (2020). Identification of novel compounds against three targets of SARS CoV-2 coronavirus by combined virtual screening and supervised machine learning. [Preprint]. Bulletin of the World Health Organization. https://doi.org/10.2471/BLT.20.255943

Kaitin, K. I. (2010). Deconstructing the drug development process: The new face of innovation. Clinical Pharmacology & Therapeutics, 87(3), 356-361. https://doi.org/10.1038/clpt.2009.293

Kandeel, M., & Al-Nazawi, M. (2020). Virtual screening and repurposing of FDA approved drugs against COVID-19 main protease. Life Sciences, 251, 117627. https://doi.org/10.1016/j.lfs.2020.117627

Kapetanovic, I. M. (2008). Computer-aided drug discovery and development (CADDD): In silico-chemico-biological approach. Chemico-Biological Interactions, 171(2), 165-176. https://doi.org/10.1016/j.cbi.2006.12.006

Khaerunnisa, S., Kurniawa, H., Avaluddin, R., Suhartati, S., & Soetjipto, S. (2020). Potential inhibitor of Covid-19 main protease (Mpro) from several medicinal plant compounds by molecular docking study. Preprints. https://doi.org/10.20944/preprints202003.0226.v1

Kim, D., Lee, J.-Y., Yang, J.-S-, Kim, J.-W., Kim, V. N., & Chang, H. (2020). The architecture of SARS-CoV-2 transcriptome. Cell, 181(4), 914-921.e10. https://doi.org/10.1016/j.cell.2020.04.011

Korber, B., Fischer, W., Gnanakaran, S., Yoon, H., Theiler, J., Abfalterer, W., … Montefiori, D. (2020). Tracking changes in SARS-CoV-2 spike: Evidence that D614G increases infectivity of the COVID-19 virus. Cell, 182(4), 812-827.e19. https://doi.org/10.1016/j.cell.2020.06.043

Kumar, D., Chandel, V., Raj, S., & Rathi, B. (2020). In silico identification of potent FDA approved drugs against Coronavirus COVID-19 main protease: A drug repurposing approach. Chemical Biology Letters, 7(3), 166-175.

http://pubs.iscience.in/journal/index.php/cbl/article/view/1033

Kumar, Y., Singh, H., & Patel, C. N. (2020). In silico prediction of potential inhibitors for the main protease of SARS-CoV-2 using molecular docking and dynamics simulation based drug-repurposing. Journal of Infection and Public Health, 13(9), 1210-1223. https://doi.org/10.1016/j.jiph.2020.06.016

Lagunin, A. A., Goel, R. K., Gawande, D. Y., Pahwa, P., Gloriozova, T. A., Dmitriev, A. V., … Poroikov, V. V. (2014). Chemo- and bioinformatics resources for in silico drug discovery from medicinal plants beyond their traditional use: A critical review. Natural Product Reports, 31(11), 1585-1611. https://doi.org/10.1039/C4NP00068D

Leelananda, S. P., & Lindert, S. (2016). Computational methods in drug discovery. Beilstein Journal of Organic Chemistry, 12(1), 2694-2718. https://doi.org/10.3762/bjoc.12.267

Li, F., Li, W., Farzan, M., & Harrison, S. C. (2005). Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science, 309(5742), 1864-1868. https://doi.org/10.1126/science.1116480

Li, G., & De Clercq, E. (2020). Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nature Reviews Drug Discovery, 19(3), 149-150. https://doi.org/10.1038/d41573-020-00016-0

Li, H., Zhou, Y., Zhang, M., Wang, H., Zhao, Q., & Liu, J. (2020). Updated approaches against SARS-CoV-2. Antimicrobial Agents and Chemotherapy, 64(6), Article e00483-20. https://doi.org/10.1128/AAC.00483-20

Li, W., Moore, M. J., Vasilieva, N., Sui, J., Wong, S. K., Berne, M. A., … Farzan, M. (2003). Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature, 426(6965), 450-454. https://doi.org/10.1038/nature02145

Li, W., Zhang, C., Sui, J., Kuhn, J. H., Moore, M. J., Luo, S., … Farzan, M. (2005). Receptor and viral determinants of SARS?coronavirus adaptation to human ACE2. The EMBO Journal, 24(8), 1634-1643. https://doi.org/10.1038/sj.emboj.7600640

Liu, C., Zhou, Q., Li, Y., Garner, L. V., Watkins, S. P., Carter, L. J., … Albaiu, D. (2020). Research and development on therapeutic agents and vaccines for COVID-19 and related human Coronavirus diseases. ACS Central Science, 6(3), 315-331. https://doi.org/10.1021/acscentsci.0c00272

Lukassen, S., Chua, R. L., Trefzer, T., Kahn, N. C., Schneider, M. A., Muley, T., … Eils, R. (2020). SARS-CoV-2 receptor ACE2 and TMPRSS2 are predominantly expressed in a transient secretory cell type in subsegmental bronchial branches. BioRxiv. https://doi.org/10.1101/2020.03.13.991455

Mahanta, S., Chowdhury, P., Gogoi, N., Goswami, N., Borah, D., Kumar, R., … Gogoi, B. (2020). Potential anti-viral activity of approved repurposed drug against main protease of SARS-CoV-2: An in silico based approach. Journal of Biomolecular Structure and Dynamics, 1-10. https://doi.org/10.1080/07391102.2020.1768902

Maranon, D. G., Anderson, J. R., Maranon, A. G., & Wilusz, J. (2020). The interface between coronaviruses and host cell RNA biology: Novel potential insights for future therapeutic intervention. Wiley Interdisciplinary Reviews. RNA, 11(5), Article e1614. https://doi.org/10.1002/wrna.1614

Matsuyama, S., Nagata, N., Shirato, K., Kawase, M., Takeda, M., & Taguchi, F. (2010). Efficient activation of the severe acute respiratory syndrome coronavirus spike protein by the transmembrane protease TMPRSS2. Journal of Virology, 84(24), 12658-12664. https://doi.org/10.1128/JVI.01542-10

Meyer, D., Sielaff, F., Hammami, M., Bottcher-Friebertshauser, E., Garten, W., & Steinmetzer, T. (2013). Identification of the first synthetic inhibitors of the type II transmembrane serine protease TMPRSS2 suitable for inhibition of influenza virus activation. Biochemical Journal, 452(2), 331-343. https://doi.org/10.1042/BJ20130101

Mirza, M. U., & Froeyen, M. (2020). Structural elucidation of SARS-CoV-2 vital proteins: Computational methods reveal potential drug candidates against main protease, Nsp12 polymerase and Nsp13 helicase. Journal of Pharmaceutical Analysis, 10(4), 320-328. https://doi.org/10.1016/j.jpha.2020.04.008

Mishra, A., Pathak, Y., Choudhir, G., Kumar, A., Mishra, S. K., & Tripathi, V. (2020). Natural compounds as potential inhibitors of novel coronavirus (COVID-19) main protease: An in silico study. Research Square, preprint. https://doi.org/10.21203/rs.3.rs-22839/v2

Monaghan, R. L., & Barrett, J. F. (2006). Antibacterial drug discovery - Then, now and the genomics future. Biochemical Pharmacology, 71(7), 901-909. https://doi.org/10.1016/j.bcp.2005.11.023

Naik, V. R., Munikumar, M., Ramakrishna, U., Srujana, M., Goudar, G., Naresh, P., ... Hemalatha, R. (2020). Remdesivir (GS-5734) as a therapeutic option of 2019-nCOV main protease – in silico approach. Journal of Biomolecular Structure & Dynamics, 1-14. https://doi.org/10.1080/07391102.2020.1781694

Narkhede, R. R., Pise, A. V., Cheke, R. S., & Shinde, S. D. (2020). Recognition of natural products as potential inhibitors of COVID-19 main protease (Mpro): In-silico evidences. Natural Products and Bioprospecting, 10, 297-306. https://doi.org/10.1007/s13659-020-00253-1

Oliveira, A. S. F., Ibarra, A. A., Bermudez, I., Casalino, L., Gaieb, Z., Shoemark, D. K., … Mulholland, A. J. (2020). Simulations support the interaction of the SARS-CoV-2 spike protein with nicotinic acetylcholine receptors and suggest subtype specificity. BioRxiv. https://doi.org/10.1101/2020.07.16.206680

Pachetti, M., Marini, B., Benedetti, F., Giudici, F., Mauro, E., Storici, P., … Ippodrino, R. (2020). Emerging SARS-CoV-2 mutation hot spots include a novel RNA-dependent-RNA polymerase variant. Journal of Translational Medicine 18, Article 179. https://doi.org/10.1186/s12967-020-02344-6

Paz, L. A. G., Lossada, C. A., Moncayo, L. S., Romero, F., Paz, J. L., Vera-Villalobos, … Alvarado, Y. J. (2020). Molecular docking and molecular dynamic study of two viral proteins associated with SARS-CoV-2 with ivermectin. Preprints. https://doi.org/10.20944/preprints202004.0334.v1

Peterson, L. E. (2020). COVID-19 and flavonoids: In silico molecular dynamics docking to the active catalytic site of SARS-CoV and SARS-CoV-2 main protease. Social Science Research Network. https://doi.org/10.2139/ssrn.3599426

Rahman, N., Basharat, Z., Yousuf, M., Castaldo G., Rastrelli, L., & Khan, H. (2020). Virtual screening of natural products against type II transmembrane serine protease (TMPRSS2), the priming agent of Coronavirus 2 (SARS-CoV-2). Molecules, 25(10), 2271. https://doi.org/10.3390/molecules25102271

Rensi, S., Altman, R. B., Liu, T., Lo, Y.-C., McInnes, G., Derry, A., & Keys, A. (2020). Homology modeling of TMPRSS2 yields candidate drugs that may inhibit entry of SARS-CoV-2 into human cells. ChemRxiv. https://doi.org/10.26434/chemrxiv.12009582

Rut, W., Groborz, K., Zhang, L., Sun, X., Zmudzinski, M., Pawlik, B., … Drag, M. (2020). Substrate specificity profiling of SARS-CoV-2 main protease enables design of activity-based probes for patient-sample imaging. BioRxiv. https://doi.org/10.1101/2020.03.07.981928

Sanders, J. M., Monogue, M. L., Jodlowski, T. Z., & Cutrell, J. B. (2020). Pharmacologic treatments for coronavirus disease 2019 (COVID-19): A review. Journal of the American Medical Association, 323(18), 1824-1836. https://doi.org/10.1001/jama.2020.6019

Shah, B., Modi, P., & Sagar, S. R. (2020). In silico studies on therapeutic agents for COVID-19: Drug repurposing approach. Life Sciences, 252, 117652. https://doi.org/10.1016/j.lfs.2020.117652

Shamsi, A., Mohammad, T., Anwar, S., Al Ajmi, M. F., Hussain, A., Rehman, M. T., … Hassan, M. I. (2020). Glecaprevir and Maraviroc are high-affinity inhibitors of SARS-CoV-2 main protease: Possible implication in COVID-19 therapy. Bioscience Reports, 40(6), BSR20201256. https://doi.org/10.1042/BSR20201256

Shrimp, J. H., Kales, S. C., Sanderson, P. E., Simeonov, A., Shen, M., & Hall, M. D. (2020). An enzymatic TMPRSS2 assay for assessment of clinical candidates and discovery of inhibitors as potential treatment of COVID-19. BioRxiv. https://doi.org/10.1101/2020.06.23.167544

Shulla, A., Heald-Sargent, T., Subramanya, G., Zhao, J., Perlman, S., & Gallagher, T. (2011). A transmembrane serine protease is linked to the severe acute respiratory syndrome Coronavirus receptor and activates virus entry. Journal of Virology, 85(2), 873-882. https://doi.org/10.1128/JVI.02062-10

Sisay, M. (2020). Available evidence and ongoing clinical trials of remdesivir: Could it be a promising therapeutic option for COVID-19? Frontiers in Pharmacology, 11, 791. https://doi.org/10.3389/fphar.2020.00791

Srinivasan, S., Cui, H., Gao, Z., Liu, M., Lu, S., Mkandawire, W., ... Korkin, D. (2020). Structural genomics of SARS-CoV-2 indicates evolutionary conserved functional regions of viral proteins. Viruses, 12(4), 360. https://doi.org/10.3390/v12040360

Srivastava, A. K., Kumar, A., Tiwari, G., Kumar, R., & Misra, N. (2020). In silico investigations on the potential inhibitors for COVID-19 protease. ArXiv. arXiv:2003.10642v2

Tan, Q., & Jin, Y. (2020). Oseltavimir is ineffective against COVID-19: In silico assessment, in vitro and retrospective study. MedRxiv. https://doi.org/10.1101/2020.05.15.20102392

Terstappen, G. C., & Reggiani, A. (2001). In silico research in drug discovery. Trends in Pharmacological Sciences, 22(1), 23-26. https://doi.org/10.1016/S0165-6147(00)01584-4

Ton, A.-T., Gentile, F., Hsing, M., Ban, F., & Cherkasov, A. (2020). Rapid identification of potential inhibitors of SARS?CoV?2 main protease by deep docking of 1.3 billion compounds. Molecular Informatics, 39(8). https://doi.org/10.1002/minf.202000028

Ullrich, S., & Nitsche, C. (2020). The SARS-CoV-2 main protease as drug target. Bioorganic & Medicinal Chemistry Letters, 30(17), 127377. https://doi.org/10.1016/j.bmcl.2020.127377

Umesh, Kundu, D., Selvaraj, C., Singh, S. K., & Dubey, V. K. (2020). Identification of new anti-nCoV drug chemical compounds from Indian spices exploiting SARS-CoV-2 main protease as target. Journal of Biomolecular Structure & Dynamics. https://doi.org/10.1080/07391102.2020.1763202

Wang, Y., Zhang, D., Guangua, G., Du, R., Zhao, J., Jin, Y., …Wang, C. (2020). Remdesivir in adults with severe COVID-19: A randomised, double-blind, placebo-controlled, multicentre trial. Lancet, 395(10236), 1569-1578. https://doi.org/10.1016/S0140-6736(20)31022-9

Weinmann, H., & Metternich, R. (2005). Editorial: Drug discovery process for kinease inhibitors. ChemBioChem, 6(3), 455-459. https://doi.org/10.1002/cbic.200500034

Wrapp, D., Wang, N., Corbett, K. S., Goldsmith, J. A., Hsieh, C.-L., Abiona, O., … McLellan, J. S. (2020). Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science, 367(6483), 1260-1263. https://doi.org/10.1126/science.abb2507

Yoshino, R., Yasuo, N., & Sekijima, M. (2020). Identification of key interactions between SARS-CoV-2 main protease and inhibitor drug candidates. Scientific Reports, 10, 12493. https://doi.org/10.1038/s41598-020-69337-9

Zhang, L., Lin, D., Sun, X., Curth, U., Drosten, C., Sauerhering, L., … Hilgenfeld, R. (2020). Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved ?-ketoamide inhibitors. Science, 368(6489), 409-412. https://doi.org/10.1126/science.abb3405

Zhou, Y., Hou, Y., Shen, J., Huang, Y., Martin, W., & Cheng, F. (2020). Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2. Cell Discovery, 6(1), 1-18. https://doi.org/10.1038/s41421-020-0153-3

Descargas

Publicado

2020-11-26

Cómo citar

Cobar, O., & Vargas, R. J. (2020). La acelerada búsqueda de candidatos terapéuticos contra SARS-CoV-2, métodos in silico: Revisión. Ciencia, Tecnologí­a Y Salud, 7(3), 347–362. https://doi.org/10.36829/63CTS.v7i3.1002

Número

Sección

Artículos de revisión

Artículos más leídos del mismo autor/a