He Evaluation of a household greywater treatment system based on multiple filters
Keywords:
Organic matter removal, phosphorus removal, anthracite sand, biological phosphorus precipitation, bacterial phosphorus adsorption, gray water reuseAbstract
Research on greywater treatment aims to contribute to sustainability and the conservation of water resources. This study evaluated an economical greywater treatment system using a prototype composed of four barrels, based on low-cost, recycled materials, inspired by Jordan's "Barrel System" used in 2007. The system includes four compartments: one for grease removal, one containing gravel, and two with anthracite sand. The study utilized greywater from a washing machine and a dishwashing sink, excluding other sources due to hydraulic, spatial, and cost limitations. To evaluate the removal efficiency of settleable solids, chemical oxygen demand (COD), biochemical oxygen demand (BOD5), hydrogen potential (pH), and total phosphorus (Pt), the 1060B method from the Standard Methods for the Examination of Water and Wastewater was used. Statistical analysis was conducted with a 95% confidence level. The results showed an average removal efficiency of 54% for biochemical oxygen demand and 48% for chemical oxygen demand. Significant differences were identified between the initial values of settleable solids and total phosphorus, with a tendency to decrease, and the hydrogen potential showed a significant reduction of 9% from its initial average value. This multi-filter system presents a viable proposal for household-level greywater treatment.
Downloads
References
Al-Hamaiedeh, H., & Bino, M. (2010). Effect of treated grey water reuse in irrigation on soil and plants. Desalination, 256(1-3). https://doi.org/10.1016/j.desal.2010.02.004
Al-Jayyousi, O. (2003). Greywater reuse: towards sustainable water management. Desalination, 156(1-3), 181-192. https://doi.org/10.1016/S0011-9164(03)00340-0
American Public Health Association [APHA], American Water Works Association [AWWA] and Water Environment Federation [WEF]. (2023). Standard methods for the examination of water and wastewater. Lipps W.C, Braun Howland E.B, Baxter, T.E. Editors. 24th Edition. Washington D.C: APHA Press.
Anaya Meléndez, F., Espinosa Descalzo, E.N., Loayza Pérez, J.E., Zamudio Castillo, R. A., & Yáñez López, M.A. (2022). Diseño de un sistema de tratamiento de aguas grises claras para reuso como agua de regadio. Revista de la Sociedad Química del Perú, 88(1), 52-62. https://dx.doi.org/10.37761/rsqp.v88i1.375
Ángel Palomino, J. R. (2019). Evaluación del potencial de tratamiento de aguas grises domésticas con sustratos orgánicos y plantas utilizadas comercialmente en paredes verdes. [Tesis de pregrado en Ingeniería Ambiental, Departamento de Ingeniería Civil y Ambiental, Universidad de Los Andes]. http://hdl.handle.net/1992/45791
Argueta Gálvez, J. E., & Aguilar Carrera, F. A. D. (2017). Efectos de la variabilidad de concentraciones de nutrientes en un medio de algas clorofitas en agua residual. Agua, Saneamiento & Ambiente, 12(1), 26–33. https://doi.org/10.36829/08ASA.v12i1.1426
Bino, M.J., Al-Beiruti, S. (2007). Studies of IDRC supported research on greywater in Jordan conducted by INWRDAM. Inter-Islamic Network on Water Resources Development and Management (INWRDAM), Amman, JO. https://idl-bnc-idrc.dspacedirect.org/items/052709ba-ab87-43cb-8d6b-88a5464c859f
Eriksson, E., Auffarth, K., Henze, M., & Ledin, A. (2002). Characteristics of grey wastewater. Urban Water, 4(1), 85-104. https://doi.org/10.1016/S1462-0758(01)00064-4
Flowers, B. (2004). Domestic water conservation: greywater, rainwater, and other innovations. Standards Council of Canadian.
Friedler, E., & Hadari, M. (2006). Economic feasibility of on-site greywater reuse in multi storey buildings. Desalination, 190(1-3), 221-234. https://doi.org/10.1016/j.desal.2005.10.007
Hernández Juárez, J. R. (2010). Alternativas para el tratamiento de las aguas grises de origen doméstico. [Tésis de maestría, Escuela Regional de Ingeniería Sanitaria y Recursos Hidráulicos, Facultad de Ingeniería Univeresidad de San Carlos de Guatemala]. https://eris.ingenieria.usac.edu.gt/tesis_is
Hocaoglu, S., Insel, G., Ubay, E., Baban, A. & Orhon, D. (2010). COD fractionation and biodegradation kinetics of segregated domestic wastewater: black and grey water fractions. Chemical Technology and Biotechnology, 85(9), 1241-1249. https://doi.org/10.1002/jctb.2423
León Urrutia, M. N. (2022). Oportunidades para el uso de geotextiles para el tratamiento de aguas grises. Agua, Saneamiento & Ambiente, 16(2), 27–33. https://doi.org/10.36829/08ASA.v16i2.1325
Li, F., Wichmann, K., & Otterpohl, R. (2009). Review of the technological approaches for grey water treatment and reuses. Science of the Total Environment, 407(11), 3439-3449. https://doi.org/10.1016/j.scitotenv.2009.02.004
March, J.G., Gual, M., & Orozco, F. (2004). Experiences on greywater re-use for toilet flushing in a hotel (Mallorca Island, Spain). Desalination, 164(3), 241-247. https://doi.org/10.1016/S0011-9164(04)00192-4
Morel, A., & Diener, S. (2006). Greywater Management in low and middle-income countries, review of different treatment systems for households or neighbourhoods. Swiss Federal Institute of Aquatic Science and Technology (Eawag). Dübendorf, Switzerland. https://www.susana.org/en/knowledge-hub/resources-and-publications/library/details/947#
Narváez, L.E., Miranda, J.M., & Narváez, L. (2012). Remoción de contaminantes de aguas grises mediante el uso de humedales artificiales en viviendas sustentables del estado de Querétaro. Encuentro Nacional de Ecotécnias. https://www.researchgate.net/publication/233398876
Rojas, J. A. (1999). Tratamiento de Aguas Residuales, Teoria y Principios de Diseño. Bogota: Escuela Colombiana de Ingenieria.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Agua, Saneamiento & Ambiente
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.