Potential use of the plant species Eichhornia Crassipes in the constructed wetland of the Arturo Pazos pilot plant
DOI:
https://doi.org/10.36829/08ASA.v18i1.1512Keywords:
biomass, wastewater, water hyacinth, volatile solids, biogas, nutrients, constructed wetlandAbstract
Eichhornia crassipes (common water hyacinth) has shown promise in wastewater treatment in limited experimental settings. However, its potential use in the Central American region remains unexplored. To address this knowledge gap, a wetland system was constructed using Eichhornia crassipes at the Arturo Pazos pilot plant by the ERIS/USAC. This study aimed to evaluate the biogas generation potential based on the percentage of volatile solids and examine the behavior of various wastewater quality parameters. Physicochemical analyses were conducted on the influent and effluent of the constructed wetland to assess the concentrations of nutrients, organic and inorganic matter, and solids. Additionally, the dry weight and ash content of Eichhornia crassipes samples were determined. The findings indicate that the Eichhornia crassipes cultivated in the wetland have the ability to generate biogas. However, the observed percentage of volatile solids was found to be low. Therefore, the feasibility of utilizing Eichhornia crassipes for biogas production should be further evaluated in a co-digestion setting. Moreover, the study demonstrated the significant potential of Eichhornia crassipes in the removal of BOD, COD, turbidity, and TSS from wastewater. Notably, reductions exceeding 90% were achieved for these parameters. These findings underscore the remarkable efficacy of Eichhornia crassipes as an environmentally sustainable approach for wastewater treatment.
Downloads
References
Amalina, F., Abd, A., Krishnan, S., Zularisam, A.W, & Nasrullah, M. (2022). Water hyacinth (Eichhornia crassipes) for organic contaminants removal in water -A review. Journal of Hazardous Materials Advances, 7(1), Article e 100092. https://doi.org/10.1016/j.hazadv.2022.100092
Delgadillo, O., Camacho, A., Pérez, L., & Andrade, M. (2010). Depuración de aguas residuales por medio de humedales artificiales. Cochabamba: Universidad Mayor de San Simón.
Dobias, J., & Leshem, I. (2008). Sistemas de tratamiento de aguas residuales e implementación de humedales construidos en la cuenca del lago Atitlán, Guatemala. Suecia, Lund University.
Kouamé, V., Yapoga, S., Kouadio, N., Tidou, S., & Atsé, C. (2016). Phytoremediation of Wastewater toxicity using water hyacinth (Eichhornia crassipes) and water lettuce (Pistia stratiotes). International Journal of Phytoremediation, 18(10), 949-955. https://doi.org/10.1080/15226514.2016.1183567
Kumar, V., Singh, J., Nadeem, M., Kumar, P., & Pathak, V. (2018). Experimental and kinetics studies for biogas production using water hyacinth (Eichhornia crassipes [Mart.] Solms) and sugar mill effluent. Waste and Biomass Valorization, 11(1), 109-119. https://doi.org/10.1007/s12649-018-0412-9
Metcalf & Eddy, Inc., Tchobanoglous, G, Stensel, H., Tsuchihashi, R., & Burton, F. (1995). Ingeniería de aguas residuales: Tratamiento, vertido y reutilización (3ra. Ed.). McGraw Hill.
Miranda Ríos, M. (2000). Desarrollo, situación actual y aplicaciones potenciales de los humedales artificiales de flujo horizontal en México. [Tesis de licenciatura, Facultad de Química, Universidad Nacional Autónoma de México]. https://repositorio.unam.mx/contenidos/3509402
Orhorhoro, E.K., Ebunilo, P.O., & Sadjere, E.G. (2017). Experimental determination of effect of total solid (TS) and volatile solid (VS) on biogas yield. American Journal of Modern Energy, 3(6), 131-135. http://dx.doi.org/10.11648/j.ajme.20170306.13
Quispe Benavides, K., Guadalupe Baylón, N., Diaz Avalos, H., & Días Panduro, H. (2021). Utilización de Eichhornia crassipes y Lemna minor en la remoción de nitrógeno y fósforo de las aguas residuales de la laguna de oxidación de la ciudad de Pucallpa, Perú. Ciencia Latina Revista Multidisciplinar, 5(3), 2813-2827. https://doi.org/10.37811/cl_rcm.v5i3.491
Rashama, C., Malambo, T.S., Christian, R., & Matambo, T.S. (2023). Investigating anaerobic digestion of water hyacinth (Eichhornia crassipies) sourced from Hartbeesport dam in South Africa. Preprints.org 2023, 2023051618.
https://doi.org/10.20944/preprints202305.1618.v1
Romero Aguilar, M., Colín Cruz, A., & Sánchez Salinas, E. (2009). Tratamiento de aguas residuales por un sistema piloto de humedales artificiales: evaluación de la remoción de la carga orgánica. Revista Internacional de Contaminacion Ambiental, 25(3), 157-167. https://www.redalyc.org/pdf/370/37012012004.pdf
Turcios, A.E, Cayenne, A., Uellendahl, H., & Papenbrock, J. (2011). Halophyte plants and their residues as feedstock for biogas production—Chances and challenges. Applied Science, 11(6), Article e 2746. https://doi.org/10.3390/app11062746
Zambrano Vera, G. (2021). Diseño de una planta eléctrica a partir de biogás obtenido de Jacintos de agua (Eichhornia crassipes) como materia prima. [Tesis de licenciatura, Facultad de Ingeniería en Mecánica y Ciencias de la Producción, Escuela Superior Politécnica del Litoral]. https://www.dspace.espol.edu.ec/handle/123456789/53186
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Agua, Saneamiento & Ambiente

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

