Analysis of the Cabuz river flow estimate using rainfall from the WRF model and recorded rainfall

Authors

  • Wilder Eduardo González Raxjal

Keywords:

Cabuz River, WRF model resolution, synthetic unit hydrograph, initial potential retention, flood, runoff

Abstract

The use of numerical weather models is important for any National Weather Service. The Weather Research and Forecasting (WRF) model is a numerical meteorological model used in this study as a tool for estimating flows using their forecast rainfall. This study shows the importance of the use of numerical meteorological models as tools in hydrology applied to basins that present records of floods that cause severe damage to the population that is in them, such is the case of the Cabuz river from Guatemala, where this study is applied. It is expected that this first approximation of the model will allow early warning systems to be implemented in the future to help reduce disasters in the Cabuz river basin. In this study, a meteorological model and a hydrological model were used to carry out a rainfall-runoff analysis. Eight heavy rainfall events from 2010 were selected to calibrate the basin using the SCS synthetic unit hydrograph methodology. The 2014 selected rainfall events were modeled using the calibration conditions of the basin as a base. The results show that the rainfall hydrographs predicted by the WRF model, and the recorded rainfall had significant variations, which are attributed to the resolution used in the model or to the influence that the initial potential retention in the basin can generate, for which reason recommends further studies on these two aspects to reduce these differences found.

Downloads

Download data is not yet available.

References

Aparicio, F.J. (1989). Fundamentos de Hidrología de Superficie. (1.a ed.). Limusa.

Barranza, E., Choto, L. & Cortez, J. (2017). Aplicación del Modelo Mesoescalar WRF (Weather Research Forecast Model) en la modelación hidrológica de la cuenca del Río Sucio. [Tesis de licenciatura, Universidad de El Salvador, El Salvador]. https://ri.ues.edu.sv/id/eprint/12914

Bates, B.C., Kundzewicz, Z.W., Wu, S. & Palutikof, J.P. (2008). El cambio Climático y el agua. Documento técnico del Grupo Intergubernamental de Expertos sobre el Cambio Climático, secretaría del IPPC, Ginebra, Suiza. https://archive.ipcc.ch/pdf/technical-papers/ccw/climate-change-water-sp.pdf

Beven, J.L. (2010). Tropical Cyclone Report, Tropical Storm Agatha (EP012010) 29-30 May 2010. https://www.nhc.noaa.gov/data/tcr/EP012010_Agatha.pdf

Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California [CICESE]. (2020). Datos climáticos diarios del CLICOM del SMN a través de la plataforma web del CICESE. [Conjunto de datos]. http://clicom-mex.cicese.mx

Feldman, A. (2000). Hydrological Modeling System Hec-Hms, Technical Reference Manual. U.S. Army Corps of Engineers. https://www.hec.usace.army.mil/software/hec-hms/documentation/HEC-HMS_Technical%20Reference%20Manual_(CPD-74B).pdf

Givati, A.; Lynn, B.; Liu, Y. & Rimmer, A. (2011). Using the WRF Model in an Operational Streamflow Forecast System for the Jordan River. Journal of Applied Meteorology and Climatology, 51(2), 285-299. https://doi.org/10.1175/JAMC-D-11-082.1

Givati, A.; Gochis, D.; Rummler, T. & Kunstmann, H. (2016). Comparing One-Way and Two-Way Coupled Hydrometeorological Forecasting Systems for Flood in the Mediterranean Region. Hydrology, 3(2), 19. https://doi.org/10.3390/hydrology3020019

Ibáñez, S., Moreno, H. & Gisbert, J.M. (2011). Métodos para la determinación del tiempo de concentración (tc) de una cuenca hidrográfica. Documento Técnico, Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural, Universidad Politécnica de Valencia. https://www.udocz.com/apuntes/85669/metodos-para-la-determinacion-del-tiempo-de-concentracion-tc-de-una-cuenca-hidrografica

Monsalve, G. (1999). Hidrología en la Ingeniería. (2.a ed.). Escuela Colombiana de Ingeniería.

Moya, A. & Ortega, J. (2015). Aplicación del modelo meteorológico WRF para el pronóstico de precipitación en período lluvioso de Cuba, 2014. Revista Apuntes de Ciencia y Sociedad, 5(1), 135-145. https://doi.org/10.18259/acs.2015021

Natural Resources Conservation Service [NRCS]. (2004). Part 630, Hydrology National Enginneering Handbook, Chapter 7 and 9. United States Department of Agriculture (USDA). https://directives.sc.egov.usda.gov/viewerFS.aspx?hid=21422

Orozco, E. (2004). Análisis de crecidas en la cuenca del río Samalá, a la altura del puente en la CA2. Revista Agua, Saneamiento y Ambiente, 1(2) 19-27.

Orozco, E. (2014). Notas del curso de Flujos en Medios Porosos, Relación Precipitación-Escorrentía. Folleto del curso, Escuela Regional de Ingeniería Sanitaria y Recursos Hidráulicos, Facultad de Ingeniería, Universidad de San Carlos de Guatemala.

Pontoppidan, M., Reuder, J., Mayer, S. & Kolstad, E. (2017). Downscaling an intense precipitation event in complex terrain: the importance of high grid resolution. Tellus A: Dynamic Meteorology and Oceanography, 69(1), Artículo 1271561. https://doi.org/10.1080/16000870.2016.1271561

QGIS, Development Team, (2018). QGIS Geographic Information System. Open-Source Geospatial Foundation Project. http://qgis.osgeo.org

QGIS Development Team, (2020). QGIS Geographic Information System. Open-Source Geospatial Foundation Project. https://docs.qgis.org/3.10/en/docs/gentle_gis_introduction/spatial_analysis_interpolation.html?highlight=interpolation

Roebber, P.J., Shultz, D.M., Colle, B.A. & Stensrud, D.J. (2004). Toward Improved Prediction: High-Resolution and Ensemble Modeling Systems in Operations. Weather and Forecasting, 19(5), 936–949. https://doi.org/10.1175/1520-0434(2004)019<0936:TIPHAE>2.0.CO;2

Rogelis, M.C., & Werner, M. (2018). Streamflow forecasts from WRF precipitation for flood early warning in mountain tropical areas. Hydrology and Earth System Sciences, 22(1) 853–870. https://doi.org/10.5194/hess-22-853-2018

Scharffenberg, B., Bartles, M., Brauer, T., Fleming, M. & Karlovits, G. (2018). Hydrological Modeling System Hec-Hms, User’s Manual. U.S. Army Corps of Engineers. Davis, CA., P.640. https://www.hec.usace.army.mil/software/hec-hms/documentation/HEC-HMS_Users_Manual_4.3.pdf

Schwartz, C.S., Kain, J.S., Weiss, S.J., Xue, M., Bright, D.R., Kong, F., Thomas, K.W., Levit, J.J. & Coniglio, M.C. (2009). Next-Day Convection-Allowing WRF Model Guidance: A Second Look at 2-km versus 4-km Grid Spacing. Monthly Weather Review, 137(10), 3351-3372. https://doi.org/10.1175/2009MWR2924.1

Skamarock, W.C., Klemp, J.B., Dudhia, J., Gill, D.O., Barker, D., Duda, M.G., Huang, X.Y., Wang, W., & Powers, J.G. (2008). A Description of the Advanced Research WRF Version 3 (No. NCAR/TN-475+STR). University Corporation for Atmospheric Research. http://dx.doi.org/10.5065/D68S4MVH

Vélez, J.J. & Botero, A. (2011). Estimación del tiempo de concentración y tiempo de rezago en la cuenca experimental urbana de La Quebrada San Luis, Manizales. DYNA, 78(165), 58-71. https://revistas.unal.edu.co/index.php/dyna/article/view/25640

Villón, M. (2004). Hidrología. (1.a ed.). Editorial Tecnológica de Costa Rica.

Weisman, M.L., Davis, C., Wang, W., Manning, K.W. & Klemp, J.B. (2008). Experiences with 0-36-h Explicit Convective Forecasts with WRF-ARW Model. Weather and Forecasting, 23(3), 407-437. https://doi.org/10.1175/2007WAF2007005.1

Younis, J., Anquetin, S. & Thielen, J. (2008). The benefit of high-resolution operational weather forecasts for flash flood warning. Hydrology and Earth System Sciences, 12(4), 1039-1051. https://doi.org/10.5194/hess-12-1039-2008

Published

2022-12-31

How to Cite

González Raxjal, W. E. (2022). Analysis of the Cabuz river flow estimate using rainfall from the WRF model and recorded rainfall. Agua, Saneamiento & Ambiente, 17(2), 41–55. Retrieved from https://revistas.usac.edu.gt/index.php/asa/article/view/1510

Issue

Section

Scientific Articles