Analysis of the Cabuz river flow estimate using rainfall from the WRF model and recorded rainfall
Keywords:
Cabuz River, WRF model resolution, synthetic unit hydrograph, initial potential retention, flood, runoffAbstract
The use of numerical weather models is important for any National Weather Service. The Weather Research and Forecasting (WRF) model is a numerical meteorological model used in this study as a tool for estimating flows using their forecast rainfall. This study shows the importance of the use of numerical meteorological models as tools in hydrology applied to basins that present records of floods that cause severe damage to the population that is in them, such is the case of the Cabuz river from Guatemala, where this study is applied. It is expected that this first approximation of the model will allow early warning systems to be implemented in the future to help reduce disasters in the Cabuz river basin. In this study, a meteorological model and a hydrological model were used to carry out a rainfall-runoff analysis. Eight heavy rainfall events from 2010 were selected to calibrate the basin using the SCS synthetic unit hydrograph methodology. The 2014 selected rainfall events were modeled using the calibration conditions of the basin as a base. The results show that the rainfall hydrographs predicted by the WRF model, and the recorded rainfall had significant variations, which are attributed to the resolution used in the model or to the influence that the initial potential retention in the basin can generate, for which reason recommends further studies on these two aspects to reduce these differences found.
Downloads
References
Aparicio, F.J. (1989). Fundamentos de Hidrología de Superficie. (1.a ed.). Limusa.
Barranza, E., Choto, L. & Cortez, J. (2017). Aplicación del Modelo Mesoescalar WRF (Weather Research Forecast Model) en la modelación hidrológica de la cuenca del Río Sucio. [Tesis de licenciatura, Universidad de El Salvador, El Salvador]. https://ri.ues.edu.sv/id/eprint/12914
Bates, B.C., Kundzewicz, Z.W., Wu, S. & Palutikof, J.P. (2008). El cambio Climático y el agua. Documento técnico del Grupo Intergubernamental de Expertos sobre el Cambio Climático, secretaría del IPPC, Ginebra, Suiza. https://archive.ipcc.ch/pdf/technical-papers/ccw/climate-change-water-sp.pdf
Beven, J.L. (2010). Tropical Cyclone Report, Tropical Storm Agatha (EP012010) 29-30 May 2010. https://www.nhc.noaa.gov/data/tcr/EP012010_Agatha.pdf
Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California [CICESE]. (2020). Datos climáticos diarios del CLICOM del SMN a través de la plataforma web del CICESE. [Conjunto de datos]. http://clicom-mex.cicese.mx
Feldman, A. (2000). Hydrological Modeling System Hec-Hms, Technical Reference Manual. U.S. Army Corps of Engineers. https://www.hec.usace.army.mil/software/hec-hms/documentation/HEC-HMS_Technical%20Reference%20Manual_(CPD-74B).pdf
Givati, A.; Lynn, B.; Liu, Y. & Rimmer, A. (2011). Using the WRF Model in an Operational Streamflow Forecast System for the Jordan River. Journal of Applied Meteorology and Climatology, 51(2), 285-299. https://doi.org/10.1175/JAMC-D-11-082.1
Givati, A.; Gochis, D.; Rummler, T. & Kunstmann, H. (2016). Comparing One-Way and Two-Way Coupled Hydrometeorological Forecasting Systems for Flood in the Mediterranean Region. Hydrology, 3(2), 19. https://doi.org/10.3390/hydrology3020019
Ibáñez, S., Moreno, H. & Gisbert, J.M. (2011). Métodos para la determinación del tiempo de concentración (tc) de una cuenca hidrográfica. Documento Técnico, Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural, Universidad Politécnica de Valencia. https://www.udocz.com/apuntes/85669/metodos-para-la-determinacion-del-tiempo-de-concentracion-tc-de-una-cuenca-hidrografica
Monsalve, G. (1999). Hidrología en la Ingeniería. (2.a ed.). Escuela Colombiana de Ingeniería.
Moya, A. & Ortega, J. (2015). Aplicación del modelo meteorológico WRF para el pronóstico de precipitación en período lluvioso de Cuba, 2014. Revista Apuntes de Ciencia y Sociedad, 5(1), 135-145. https://doi.org/10.18259/acs.2015021
Natural Resources Conservation Service [NRCS]. (2004). Part 630, Hydrology National Enginneering Handbook, Chapter 7 and 9. United States Department of Agriculture (USDA). https://directives.sc.egov.usda.gov/viewerFS.aspx?hid=21422
Orozco, E. (2004). Análisis de crecidas en la cuenca del río Samalá, a la altura del puente en la CA2. Revista Agua, Saneamiento y Ambiente, 1(2) 19-27.
Orozco, E. (2014). Notas del curso de Flujos en Medios Porosos, Relación Precipitación-Escorrentía. Folleto del curso, Escuela Regional de Ingeniería Sanitaria y Recursos Hidráulicos, Facultad de Ingeniería, Universidad de San Carlos de Guatemala.
Pontoppidan, M., Reuder, J., Mayer, S. & Kolstad, E. (2017). Downscaling an intense precipitation event in complex terrain: the importance of high grid resolution. Tellus A: Dynamic Meteorology and Oceanography, 69(1), Artículo 1271561. https://doi.org/10.1080/16000870.2016.1271561
QGIS, Development Team, (2018). QGIS Geographic Information System. Open-Source Geospatial Foundation Project. http://qgis.osgeo.org
QGIS Development Team, (2020). QGIS Geographic Information System. Open-Source Geospatial Foundation Project. https://docs.qgis.org/3.10/en/docs/gentle_gis_introduction/spatial_analysis_interpolation.html?highlight=interpolation
Roebber, P.J., Shultz, D.M., Colle, B.A. & Stensrud, D.J. (2004). Toward Improved Prediction: High-Resolution and Ensemble Modeling Systems in Operations. Weather and Forecasting, 19(5), 936–949. https://doi.org/10.1175/1520-0434(2004)019<0936:TIPHAE>2.0.CO;2
Rogelis, M.C., & Werner, M. (2018). Streamflow forecasts from WRF precipitation for flood early warning in mountain tropical areas. Hydrology and Earth System Sciences, 22(1) 853–870. https://doi.org/10.5194/hess-22-853-2018
Scharffenberg, B., Bartles, M., Brauer, T., Fleming, M. & Karlovits, G. (2018). Hydrological Modeling System Hec-Hms, User’s Manual. U.S. Army Corps of Engineers. Davis, CA., P.640. https://www.hec.usace.army.mil/software/hec-hms/documentation/HEC-HMS_Users_Manual_4.3.pdf
Schwartz, C.S., Kain, J.S., Weiss, S.J., Xue, M., Bright, D.R., Kong, F., Thomas, K.W., Levit, J.J. & Coniglio, M.C. (2009). Next-Day Convection-Allowing WRF Model Guidance: A Second Look at 2-km versus 4-km Grid Spacing. Monthly Weather Review, 137(10), 3351-3372. https://doi.org/10.1175/2009MWR2924.1
Skamarock, W.C., Klemp, J.B., Dudhia, J., Gill, D.O., Barker, D., Duda, M.G., Huang, X.Y., Wang, W., & Powers, J.G. (2008). A Description of the Advanced Research WRF Version 3 (No. NCAR/TN-475+STR). University Corporation for Atmospheric Research. http://dx.doi.org/10.5065/D68S4MVH
Vélez, J.J. & Botero, A. (2011). Estimación del tiempo de concentración y tiempo de rezago en la cuenca experimental urbana de La Quebrada San Luis, Manizales. DYNA, 78(165), 58-71. https://revistas.unal.edu.co/index.php/dyna/article/view/25640
Villón, M. (2004). Hidrología. (1.a ed.). Editorial Tecnológica de Costa Rica.
Weisman, M.L., Davis, C., Wang, W., Manning, K.W. & Klemp, J.B. (2008). Experiences with 0-36-h Explicit Convective Forecasts with WRF-ARW Model. Weather and Forecasting, 23(3), 407-437. https://doi.org/10.1175/2007WAF2007005.1
Younis, J., Anquetin, S. & Thielen, J. (2008). The benefit of high-resolution operational weather forecasts for flash flood warning. Hydrology and Earth System Sciences, 12(4), 1039-1051. https://doi.org/10.5194/hess-12-1039-2008
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Agua, Saneamiento & Ambiente
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.