Annual erosivity models using rain gauge records for the Pacific slope of Guatemala

Authors

  • Felix Rocael Martínez Gómez Escuela Regional de Ingeniería Sanitaria y Recursos Hidráulicos
  • Walter Arnoldo Bardales Espinoza Facultad de Agronomía Universidad de San Carlos de Guatemala

DOI:

https://doi.org/10.36829/08ASA.v17i2.1503

Keywords:

USLE, storm, precipitation, erosive days, kinetic energy of rain, rain gauges

Abstract

Erosivity is one of the six factors of the Universal Soil Loss Equation (USLE). To implement the correct soil conservation techniques, it is necessary to know the spatial and temporal variation of erosivity. The objective of this study was to generate models to estimate annual erosivity in the Guatemalan Pacific using rainfall information from 28 stations of the Guatemalan Private Institute for Climate Change Research. Two models were developed for each station using the daily and monthly precipitation data as an independent variable, and three regional models using the daily, monthly, and annual precipitation of all the stations as the independent variable.  The erosivity of each storm was calculated according to the methodology proposed by Wischmeier & Smith (1978). The rainfall and erosivity records of the stations were fitted to a model of type R=(αP)^β.  The quality of the results of the observed and estimated erosivities were evaluated by means of the percentage of bias statistics (PBIAS), the Nash-Sutcliffe coefficient (NSE), the standard deviation ratio (RSR) and analysis of variance The best results for the estimation of annual erosivity were obtained when regional models were used with monthly and annual precipitation data. The best model for estimating erosivity will be used to generate information in places where there are only rain gauges or to extend erosivity series on a monthly and annual scale in the Pacific of Guatemala.

Downloads

Download data is not yet available.

References

Barros, A. P., & Lettenmaier, D. P. (1994). Dynamic modeling of orographically induced precipitation. Reviews of Geophysics, 32(3), 265–284. https://doi.org/10.1029/94RG00625 DOI: https://doi.org/10.1029/94RG00625

Behrends Kraemer, F., Chagas, C. I., Ibañez, L., Carfagno, P., & Vangeli, S. (2018). Análisis de la erosividad de las lluvias para el partido de San Pedro (Bs. As.). Ciencia Del Suelo, 36(1), 124–137. http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S1850-20672018000100013&lng=es&nrm=iso&tlng=es

Bonilla, C. A., & Vidal, K. L. (2011). Rainfall erosivity in Central Chile. Journal of Hydrology, 410(1–2), 126–133. https://doi.org/10.1016/J.JHYDROL.2011.09.022 DOI: https://doi.org/10.1016/j.jhydrol.2011.09.022

Bravo de León, M. E. (1988). Estudio preliminar de la erosividad de las lluvias en la república de Guatemala. [Tesis Licenciatura, Facultad de Agronomía, Universidad de San Carlos de Guatemala]. http://biblioteca.usac.edu.gt/tesis/01/01_1066.pdf

Cisneros, J., Cholaky, C., Cantero, A., González, J., Reynero, M., Diez, A., & Bergesio, L. (2012). Erosión hídrica: Principios y técnicas de manejo. (1st ed.). UniRio. http://www.todoagro.com.ar/documentos/2013/Erosion_Hidrica.pdf

Del Cid Asturias, R. G. (1986). Determinación del índice de erosividad de las lluvias para las estaciones pluviograficas de la zona noroccidental de Guatemala. [Tesis licenciatura, Facultad de Agronomía, Universidad de San Carlos de Guatemala]. http://biblioteca.usac.edu.gt/tesis/01/01_0844.pdf

Fuentes Montepeque, J. C. (2021). Régimen pluviométrico asociado a series de tiempo máximas en la subcuenca del río Villalobos. Agua, Saneamiento & Ambiente, 16(1), 11–16. https://revistas.usac.edu.gt/index.php/asa/article/view/1092/751

Chagas, C. & Kraemer, F. (2018). Escurrimiento, erosión del suelo y contaminación de los recursos hídricos superficiales por sedimentos asociados a la actividad agropecuaria extensiva: algunos elementos para su análisis (1st ed.). Editorial Facultad de Agronomía Universidad de Buenos Aires . https://www.agro.uba.ar/sites/default/files/chagas_celio_ignacio.pdf

Instituto Privado de Investigación sobre Cambio Climático (ICC). (2021, March 21). Sistema de información meteorológica (SIHM) del ICC. https://redmet.icc.org.gt/login

Jordán, A., & Bellinfante, N. (2000). Cartografía de la erosividad de la lluvia estimada a partir de datos pluviométricos mensuales en el Campo de Gibraltar (Cádiz). 83–92. https://www.secs.com.es/data/Revista%20edafo/Volumen%207-3.%20Septiembre%202000.%20pa%2083-92.pdf

Lee, J. H., & Heo, J. H. (2011). Evaluation of estimation methods for rainfall erosivity based on annual precipitation in Korea. Journal of Hydrology, 409(1–2), 30–48. https://doi.org/10.1016/j.jhydrol.2011.07.031 DOI: https://doi.org/10.1016/j.jhydrol.2011.07.031

Lee, M. H., & Lin, H. H. (2015). Evaluation of annual rainfall erosivity index based on daily, monthly, and annual precipitation data of rainfall station network in Southern Taiwan. International Journal of Distributed Sensor Networks, 11(6). https://doi.org/10.1155/2015/214708 DOI: https://doi.org/10.1155/2015/214708

Moriasi, D. N., Arnold, J. G., Liew, M. W. Van, Bingner, R. L., Harmel, R. D., & Veith, T. L. (1983). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50(3), 885-900. https://swat.tamu.edu/media/1312/moriasimodeleval.pdf DOI: https://doi.org/10.13031/2013.23153

Ongley, E. D. (1997). Lucha Contra la Contaminación Agrícola de los Recursos Hídricos. (Estudio Food and Agriculture Organization of the United Nations [FAO] Riego y Drenaje-55). https://www.fao.org/3/W2598S/w2598s00.htm

Renard, K. G., & Freimund, J. R. (1994). Using monthly precipitation data to estimate the R-factor in the revised USLE. Journal of Hydrology, 157(1–4), 287–306. https://doi.org/10.1016/0022-1694(94)90110-4 DOI: https://doi.org/10.1016/0022-1694(94)90110-4

Richardson, C. W., Foster, G. R., & Wright, D. A. (1983). Estimation of erosion index from daily rainfall amount. Transactions, American Society of Agricultural Engineers, 26(1), 153–160. https://doi.org/10.13031/2013.33893 DOI: https://doi.org/10.13031/2013.33893

Rivera, P. H., & Gómez, A. A. (1991). Erosividad de las lluvias de la zona cafetera central colombiana (Caldas,. Quindío, Risaralda). Cenicafe, 42(2), 37–52. https://www.cenicafe.org/es/index.php/nuestras_publicaciones/revista_cenicafe/revista_cenicafe_arc042_02_37-52

Robichaud, A. J., & Austin, G. L. (1988). On the modelling of warm orographic rain by the seeder-feeder mechanism. Quarterly Journal of the Royal Meteorological Society, 114(482), 967–988. https://doi.org/10.1002/QJ.49711448207 DOI: https://doi.org/10.1002/qj.49711448207

Roldán Cordón, J. M. (1988). Determinación del índice de erosividad de la Ecuación Universal de Pérdida de Suelo en la región central de la república de Guatemala. [Tesis licencitura, Facultad de Agronomía, Universidad de San Carlos de Guatemala]. http://biblioteca.usac.edu.gt/tesis/01/01_1039.pdf

Rotunno, R. & Ferreti, R. (2001). Mechanisms of Intense Alpine Rainfall. Journal of the Atmospheric Science, 58(13), 1732-1749. https://doi.org/10.1175/1520-0469(2001)058<1732:MOIAR>2.0.CO;2 DOI: https://doi.org/10.1175/1520-0469(2001)058<1732:MOIAR>2.0.CO;2

Salako, F. K., Ghuman, B. S., & Lal, R. (1995). Rainfall erosivity in south-central Nigeria. Soil Technology, 7(4), 279–290. https://doi.org/10.1016/0933-3630(94)00013-T DOI: https://doi.org/10.1016/0933-3630(94)00013-T

Santos Pérez, A. L., & Orrego León, E. A. (2016). Riesgo potencial a erosión hídrica para la planificación del manejo y conservación de suelos de la agroindustria azucarera Guatemalateca. Revista Tikalia, 34(1), 29–45. https://icc.org.gt/wp-content/uploads/2017/07/TIKALIA-1-2016-31-47.pdf

Vantas, K., Sidiropoulos, E., & Evangelides, C. (2020). Estimating Rainfall Erosivity from Daily Precipitation Using Generalized Additive Models. Environmental Sciences Proceedings, 2(1), 21. https://doi.org/10.3390/environsciproc2020002021 DOI: https://doi.org/10.3390/environsciproc2020002021

Wischmeier, W. H. (1959). A Rainfall Erosion Index for a Universal Soil-Loss Equation. Soil Science Society of America Journal, 23(3), 246–249. https://doi.org/10.2136/SSSAJ1959.03615995002300030027X DOI: https://doi.org/10.2136/sssaj1959.03615995002300030027x

Wischmeier, W. H., & Smith, D. D. (1958). Rainfall energy and its relationship to soil loss. TrAGU, 39(2), 285–291. https://doi.org/10.1029/TR039I002P00285 DOI: https://doi.org/10.1029/TR039i002p00285

Wischmeier, W. H., & Smith, D. D. (1978). Predicting rainfall erosion losses:a guide to conservation planning. Science and Education Administration, U.S. Dept. of Agriculture. https://naldc.nal.usda.gov/download/CAT79706928/pdf

Xie, Y., Yin, S., Liu, B. yuan, Nearing, M. A., & Zhao, Y. (2016). Models for estimating daily rainfall erosivity in China. Journal of Hydrology, 535, 547–558. https://doi.org/10.1016/j.jhydrol.2016.02.020 DOI: https://doi.org/10.1016/j.jhydrol.2016.02.020

Published

2022-12-30

How to Cite

Martínez Gómez, F. R., & Bardales Espinoza, W. A. (2022). Annual erosivity models using rain gauge records for the Pacific slope of Guatemala. Agua, Saneamiento & Ambiente, 17(2), 13–30. https://doi.org/10.36829/08ASA.v17i2.1503

Issue

Section

Scientific Articles