ANALYSIS OF ALGAE GROWTH GENERATED IN WASTEWATER EFFLUENT FROM A PERCOLATOR FILTER

Authors

  • Mario Zea Cano Ingeniero civil MSc. en ingeniería sanitaria ERIS USAC GUATEMALA
  • Félix Alan Douglas Aguilar Carrera MSc. ingeniero civil, profesor Escuela Regional de Ingeniería Sanitaria ERIS USAC

Keywords:

Chlorophytes algae, nutrient removal, eutrophication, third degree stage

Abstract

Nutrient removal in wastewater has become in recent years a topic of wide discussion in the scientific community, due to the impacts posed to water resources in contact with high levels of nutrients. A lot of water resources are exposed to accelerated eutrophication processes, one of the main causes for it are the discharges of wastewater. This situation has prompted several researchers to develop technologies for nutrient removal, one of these is the use of chlorophyte algae. Several studies, have had favorable results in the laboratory by inoculating different species of chlorophyte algae, therefore it is important to establish whether is possible or not that residual water from trickling filters can promptly develop chlorophyte algae naturally (without inoculation) and determine the biomass that can be generated in this type of application. The study achieved favorable results in identifying chlorophytes algae developed naturally (in natural conditions of lighting and temperature), obtaining an average production of chlorophytes algae ranging between 481 and 13,718 cells per milliliter. During the study, it was possible to identify two species of algae Scenedesmus sp., and Chlorella sp., which in studies conducted by (Mahapatra, Chanakya, & Ramahandra, 2013) , have reached acceptable efficiencies in nutrient removal. This study opens the possibility to develop appropriate technologies for Central American countries, for using biological process with chlorophytes algae in wastewater for nutrient removal in a third degree stage.

Downloads

Download data is not yet available.

References

APHA-AWWA-WPC. (1960). Standard Methods for the Examination of Water and Wastewater, Eleventh. EUA: APHA.

Bermeo Castillo, L. E. (2011). Estudio del cosechado de cultivos de microalgas en agua residual mediante técnicas de centrifugado. España: Universidad Técnica Particular de la Loja. Bitton, G. (2005). Wastewater microbiology. United States of America: John Wiley & Sons, Inc. .

Cho, S., Luong, T. T., Lee, D., Oh, Y.-K., & Lee, T.(2011). Reuse of effluent water from a municipal wastewater treatment plant in microalgae cultivation for biofuel production. Korea: Elsevier Ltd.

Hernández Muñoz, A. (1998). Depuración de aguas residuales. España: Colegio de Ingeieros de Caminos, Canales y Puertos.

Hernández Reyes, B., Rodríguez Palacio, M., Lozano Ramírez, C., & Castilla Hernández, P. (2012). Remoción de nutrientes por tres cultivos de microalgas libres e inmovilizados. Revista Latinoamericana Biotecnología Ambiental Algal, 80-94.

Krishna, A. R., Dev, L., & Thankamani, V. (2012). An integrated process for industrial effluent treatment and Biodiesel production using

Microalgae. India: Research in Biotechnology.

Lara Borrero, J. (2002). Eliminiación de nutrientes mediante procesos de membrana. Madrid, España: Universidad Politécnica de Madrid.

Mahapatra, D. M., Chanakya, H. N., & Ramahandra, T. V. (2013). Treatment efficacy of algae- based sewage treatment plants. India: Springer.

Metcalf & Eddy, Inc. (1996). Ingeniería de Aguas Residuales, Tratamiento, Vertido y Reutilización (Tercera ed.). Mexico: McGraw Hill Interamericana Editores S.A de C.V.

Moreno Marín, A. (2008). Fotobiorreactor cerrado como método de depuración de aguas residuales urbanas. Sevilla: Escuela Universitaria

de Ingenieros Técnicos Agrícolas de la Universidad de Sevilla.

Moreno, J. R., Medina, C. D., & Albarracín, V. H. (2012). Aspectos ecológicos y metodológicos del muestreo, identificación y cuantificación

de cianobacterias y microalgas eucariotas. Reduca (Biología). Serie Microbiología.

Moreno, M., Naranjo, B., & Koch, A. (2010). Evaluación de dos métodos para la reducción de nitrógeno, fósforo y DQO de aguas residuales, mediante un cultivo axénico de cianobacterias y un consorcio microbiano, inmovilizados y en suspensión. Revista CIENCIA, 13(1), 55-61.

Ruiz Martínez, A. (Abril de 2011). Puesta en marcha de un cultivo de microalgas para la eliminación de nutrientes de un agua residual urbana

previamente tratada anaeróbicamente. Valencia, España: Universidad Politécnica de Valencia.

Salazar Gonzalez, M. (2009). Sistemas integrales de tratamiento de aguas residuales, mediante el uso combinado de digestión anaerobia y microalgas. Contactos 73, 16-22.

Standard Methods for the examination of water and wastewater, método 1060B año 2002 p. 1-21 Modificado.

Sriram, S., & Seenivasan, R. (2012). Microalgae cultivation in wastewater for nutrient removal. Journal of algal biomass utilization, 9-13.

U.S. EPA. (2000). Wastewater Technology Fast Sheet Trickling Filters. Washington: EPA.

William J. Oswald, C.G. Golueke “EUTROPHICATION TRENDS IN THE UNITED STATES – A PROBLEM?”

Published

2017-11-30

How to Cite

Zea Cano, M., & Aguilar Carrera, F. A. D. (2017). ANALYSIS OF ALGAE GROWTH GENERATED IN WASTEWATER EFFLUENT FROM A PERCOLATOR FILTER. Agua, Saneamiento & Ambiente, 12(1), 19–25. Retrieved from https://revistas.usac.edu.gt/index.php/asa/article/view/1425

Issue

Section

Scientific Articles

Most read articles by the same author(s)