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Abstract

This study analyses time series of dengue occurrence in the southern region of Guatemala. Temporal patterns
of epidemic outbreaks in the department of Escuintla were investigated using the official reports from 2001 to

2013. In order to identify underlying associations with climate behavior, the epidemiological data were compared
with historical reports available for temperature, rainfall and humidity. Preliminary results reveal that waves of
dengue outbreaks exhibit a periodic pattern modulated by climatic conditions. A hierarchical cluster analysis al-
lowed to indirectly estimate the degree of association of each climatic variable with dengue occurrences, showing
the dominance of rainfall in dengue outbreaks patterns in three different localities. A further prospective analysis
was performed to check whether epidemic trends driven by rainfall are hold in the subsequent years. Results
presented here give support to predictive models for dengue incidence driven by climate.

Keywords: Mathematical Epidemiology, compartmental models, infectious diseases

Resumen

Este estudio analiza series de tiempo de incidencia de dengue en la región sur de Guatemala. Los patrones
temporales de los brotes epidémicos observados en el departamento de Escuintla se investigaron utilizando

los informes oficiales de 2001 a 2013. Con el fin de identifcar posibles asociaciones subyacentes con el compor-
tamiento climático, los datos epidemiológicos se compararon con los informes históricos disponibles para tempe-
ratura, lluvia y humedad. Los resultados preliminares revelan que las olas de brotes de dengue exhiben un patrón
periódico modulado por las condiciones climáticas. Una análisis de conglomerados jerárquicos permitió estimar
indirectamente el grado de asociación de cada variable climática con las incidencias del dengue, mostrando el pa-
pel dominante de la lluvia en los patrones de brotes de dengue en tres localidades diferentes. Se realizó un análisis
prospectivo adicional para verificar si las tendencias epidémicas causadas por las precipitaciones se mantienen en
los años subsiguientes. Los resultados presentados aquí dan soporte a los modelos predictivos epidemiológicos
con forzamiento estacional.

Palabras clave: Epidemiología matemática, modelos compartimentales, enfermedades infecciosas
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Introduction

Dengue outbreaks have been documented in
Guatemala since the late 1970s. The first known epi-
demic infection occurred during the rainy season in
Escuintla, the coastal lowland of southern Guatemala
(Villatoro, 2006). No major dengue events were reg-
istered the years after, until 1987, when a second ma-
jor outbreak emerged in the same region, reaching this
time a few other urban centers sharing similar climatic
conditions. Since then, a global upward trend in the
yearly dengue incidence has been observed, with par-
ticularly high outbreaks occurrences in 1991, 2000,
2009, 2010 and 2013 (CNE, 2001-2013; Villatoro,
2006).

Today the dengue virus has spread through the
principal urban centers of the country and represents
a main public health concern in Guatemala. In 2012
and 2013, the Guatemala Ministry of Public Health
(MSPAS) has notified a total of 9,827 and 12,660
dengue cases, respectively, affecting 19 out of 22 de-
partments, which are the principal administrative di-
visions of the country (CNE, 2001-2013). Risk fac-
tors such as rapid growth of population density, in-
creased population mobility, poverty, weak planed ur-
ban growth and deficient basic services supply have
presumably contributed to the progressive spread of
dengue’s epidemiological impact (Kuno, 1995).

Mosquito borne diseases are strongly modulated
by climate conditions. Temperature, precipitation, hu-
midity and wind regulate directly and indirectly vector
life cycle, habitat availability, and the epidemiologi-
cal mosquito-human cycle (Hoshen & Morse, 2004;
Morin, Comrie, & Ernst, 2013). In the particular case
of dengue, a vast literature is dedicated to identify the
major associations between climatic factors and the
ecology of Aedes genus mosquitoes, which are known
to be the main transmitters of dengue virus (Brady
et al., 2013; Ibarra et al., 2013). Empirical evidence
enriched by statistical analyses support that precipi-
tation and temperature work interdependently, influ-
encing Aedes population dynamics and habitat avail-
ability (Barrera, Amador, & MacKay, 2011; Pliego,
Velázquez-Castro, & Collar, 2017; Scott et al., 2000).
Besides, humidity intervenes in the increase of feeding
activity, survival and egg development of the Aedes ae-
gypti (Nagao et al., 2003).

Studies of the vector ecology point out that there
are lots of complexities behind climate influences
(Morin et al., 2013). There must be other environmen-
tal, biological or ecological variables that may explain,

for instance, the fact that sometimes the incidence epi-
demic peak occurs before the rainfall peak. Precipita-
tion is indeed necessary to maintain breeders. It pro-
vides the habitat for the aquatic stages of the mosquito
life cycle. However, intense rainfall may wash out
breeding sites causing a drop in vector populations.

Immature as well as adult stages of the A. aegypti
are also known to be sensitive to temperature variabil-
ity (Githeko, Lindsay, Confalonieri, & Patz, 2000).
For instance, temperatures around 30-32 ◦C favor the
reduction in the mosquito extrinsic incubation period,
increasing in that way the vectorial capacity (White,
Atmar, & Greenberg, 2000). However, temperatures
above around 34 ◦C may negatively affect the survival
of mosquitoes.

In general, models of dengue transmission based
on mosquito biology do, indeed, find support for a
strong association between transmission and weather.
Although, the need for more statistical analyses to find
consistency on the role of individual climate variables
is also evidenced (Johansson, Dominici, & Glass,
2009).

Climate-based models aimed at understanding
dengue epidemics have been applied in a wide num-
ber of areas around the world, i.e., New Caledonia
(Descloux et al., 2012), Puerto Rico (Johansson et al.,
2009), Singapore (Hii et al., 2009). A good num-
ber of these studies agree on the importance of de-
scribing the transmission on a local scale due to the
spatial heterogeneity in transmission of vector-borne
pathogens. However, there is still much work to do in
order to identify underlying patterns that are suscepti-
ble of generalization.

So far, the historical data about dengue incidence
collected by MSPAS in Guatemala has not been thor-
oughly analyzed in relation to climatic data. A close
examination to the available data, focusing on climate
variability, might help to identify spatio-temporal pat-
terns of dengue outbreaks as pointed out elsewhere
(Arcari, Tapper, & Pfueller, 2007; Jeefoo, Tripathi, &
Souris, 2010; Pessanha, Caiaffa, Almeida, Brandao, &
Proietti, 2012).

In the foreground, special attention must be
payed to the department of Escuintla. Dengue fig-
ures for this geographic area demonstrates dengue en-
demicity, thus demanding proper implementation of
control interventions. In order to contribute in provid-
ing a solid ground for the implementation of control
interventions, the present study is aimed at describing
the emergence of dengue outbreaks in Escuintla, and



Dengue outbreaks pattern in southern Guatemala

160 ‌‌ | Ciencia, Tecnología y Salud, 6(2) 2019, 158-170

its association with temperature, precipitation, and hu-
midity. Here we propose to explore plausible univer-
sal relations between incidence and climatic data pat-
terns by performing a cluster statistical analysis (Hen-
nig, Meila, Murtagh, & Rocci, 2015). The dynamics
of the dengue infection will be also probed by imple-
menting mathematical models that govern the tempo-
ral evolution of the disease. We shall recall the idea
developed by K. Dietz (Dietz, 1976), who proposed
the use of seasonal forcing on standard mathematical
models, thus taking into account the temporal behavior
of infections influenced by climatic conditions. Our
claim is that a proper treatment of climate information
can be useful to foresee the strength of dengue epi-
demics.

The paper is organized as follows. In the sec-
tion Material and methods we present the epidemic
and climatic time series obtained from the national
reporting systems. This section also describes the
database working steps needed to perform the statis-
tical analysis. We then describe the hierarchical clus-
tering method that is applied to unravel underlying as-
sociations in epidemic and climatic phenomena. Fi-
nally, taking into account the clustering results, we dis-
cuss the pattern of Dengue outbreaks from a dynam-
ical point of view by using compartmental epidemic
models and taking into account the basic ingredients
to trigger a seasonal behavior. Final remarks and con-
clusions to this study are drawn from this discussion.

Material and methods

Epidemiological data

The MSPAS information office organizes and up-
dates the registered epidemic data weekly. Time series
data of dengue incidence from years 2001 to present
are available in digital formats and ordered according
to the locality of occurrence. During this period, ap-
proximately 114,000 cases were officially reported.

Clinically, the observed cases refer to dengue
and dengue hemorrhagic fever, both pathogenically
and epidemiologically distinct. The classic fever syn-
drome largely dominates the dengue epidemic land-
scape, however, in 2009 a burst of hemorrhagic dengue
fever affected severely Guatemala’s eastern region.

According to the available data, the strength of
dengue epidemic has been particularly high in the
southern region of the country, near the Pacific coast.
The accumulated number of cases in that region ac-
counts for around 35% of the total cases reported in the

Table 1
Percentage of registered dengue cases per department dur-
ing 2001-2013

Department %
Escuintla 11.9
Jutiapa 6.0
Quetzaltenango 5.8
Santa Rosa 4.2
Retalhuleu 2.4
Suchitepéquez 2.3
San Marcos 2.2
Total 34.8

whole country during 2001-2013 (CNE, 2001-2013).
Table 1 shows the corresponding percentages for de-
partments having urban centers in the southern region.

Among all the departments in southern
Guatemala, Escuintla presents the highest dengue
morbidity. Yet, in 2010 around 2,290 people were
infected by the dengue virus in Escuintla, reaching
at that time the highest morbidity level of the whole
country. Between 2001 and 2013, approximately
11,790 cases were notified in that region.

Figure 1. Accumulated cases in Escuintla 2001-2013

Dengue incidence cases show similar behavior
every year. Even though the events are distributed
throughout the whole year, the highest incidence rates
typically occur in the rainy season, during the months
of June to September. The yearly dengue temporal dis-
tribution can be roughly grasped from Figure 1 which
organizes the accumulated incidence cases by time in-
tervals of four weeks.

With an estimated population of 746,309 inhab-
itants (INE, 2014), Escuintla covers an area of 4,384
km2 subdivided in 13 municipalities and geograph-
ically located between 91◦32’O to 90◦29’24”O and
13◦54’48”N to 14◦27’60”N.

Figure 2. Spatial distribution of accumulated cases in Es-
cuintla 2001-2013

The capital of Escuintla is Escuintla city, distant
58 km from Guatemala city and 48 km from the Pa-
cific coast. It is the densest locality of the department
an a major crossroad of trade routes with continous
flow of human population. Therefore it also serves
as an important node whereby infectious disease can
spread geographically. Figure 2 displays a heat map of
the spatial distribution of the accumulated number of
dengue cases in Escuintla from 2001 to 2013.

The department of Escuintla has a tropical wet
climate with temperatures running from around 21 to
32 ◦C and seasonal variations dominated by precip-
itation. As for many countries in similar latitudes,
three seasons can be distinguished: a cold season from
November to February, a warm season from February
to May and a rainy season the rest of the year.

Humidity levels are high the whole year, rang-
ing from about 70% in the cold season to almost 90%
in the rainy season. While most of the year, temper-
atures and humidity don’t show extreme variability,
the region does have noticeable seasonal variations in
rainfall. The annual rainfall in the region varies from
3,000 mm to more than 4,000 mm.

The rainfall in 2010, when a major dengue out-
break occurred in the municipality of Escuintla, was
above the average. In that year, the nearest weather
station registered a precipitation of 5,000 mm, with an
average rainfall in the rainy season of approximately
776 mm.

For this study, monthly climatic data were ob-

tained from the Guatemala’s Institute of Meteorology
(Insivumeh) (Insivumeh, 2007-2013). The Insivumeh
has currently two active weather stations in Escuintla
department, located in the north and the coastal border.
However climatic information for former years exists
also for other localities (Insivumeh, 2007-2013).

Temporal trends

Crude data for the analysis was obtained from the
national reporting systems of epidemic events and cli-
matic conditions.

Figure 3. Dengue cases in Escuintla

Temperature, humidity and precipitation data
were automatically collected from Insivumeh web site
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by crafting a script to select the data of interest, down-
load and transfer it into an Excel workbook. Prior to
the statistical analysis, a compilation step was needed
to integrate epidemic, climatic and geographic data. A
complete database with 29,004 registers of the com-
piled information for the whole country was organized
and managed in R. This database working step helped
us to identify unregistration levels of the official statis-
tics. It was found that the amount of available infor-
mation varies considerably from one sanitary district
to another and that the municipalities that present the
highest amount of information are Escuintla, Tiquisate
and Masagua. Therefore, in order to minimize the pos-
sibilities of having spurious results, we have selected
those municipalities for performing the temporal epi-
demic patterns analysis. For the sake of completeness
we report here our estimated degrees of lack of dengue
information for Escuintla, Tiquisate, Masagua, the cor-
responding percentages being, respectively, 4, 12 and
25%.

A first look to the epidemic and climatic patterns
in Figure 3 suggests that higher precipitation is associ-
ated with increased dengue incidences. At least qual-
itatively, the incidence of dengue cases follows the al-
most periodic rainfall behavior. The oscillating pat-
tern in disease incidence is indeed commonly observed
for endemic infections. Moreover, the infection oscil-
lations are predicted by stability analysis of endemic
equilibrium in proper mathematical models with sea-
sonal driven dynamics (Anderson & May, 1992; Pon-
ciano & Capistrán, 2011).

In the southern region of Guatemala, temperature
and humidity are fairly flat during the whole year, with
optimal values for egg and immature mosquito devel-
opment (Morin et al., 2013). So, it is expected that
the main variability in dengue incidences comes from
precipitation.

In the foregoing we explore the associations be-
tween the temperature, humidity, precipitation and
dengue incidence. The analysis will be twofold. In
a first step, we will consider just local correlations be-
tween dengue incidence and climatic factors. Then,
we will look for similarity between groups pertaining
to different locations. In the next section we recur to
clustering techniques to find group structures in the
compiled dengue-climate database.

Clustering

Hierarchical clustering analysis plays an impor-
tant role in identifying similarities and patterns in com-

plex systems. The technique involves the classifica-
tion of measured variables into homogenous subsets
in order to unravel underlying associations in phenom-
ena. Among many others areas, it has been applied
for exploratory analysis in the context of climatic data,
where it has proved to be useful in guiding the iden-
tification of climatic patterns over the year and their
changes over time (Ramos, 2001).

Cluster classification is based on quantifying de-
grees of isolation or cohesion of sets of elements be-
longing to a feature space. This requires calculating
the similarity, or equivalently, the distance between
two elements by defining a metric on the space. Each
step of the classification procedure consists on merg-
ing elements and clusters of elements by following the
criterion of similarity. The final clustering output is
commonly displayed in binary trees known as dendro-
grams. The pairwise similarity of observations is mea-
sured by the commonly called dissimilarity function.
The criterion of similarity is then extended to pairs of
clusters by a linkage function.

The Ward’s method is a widely used technique
in hierarchical clustering for defining the linkage func-
tion. It often shows good performance when compared
to other methods (Gong & Richman, 1995). Consid-
ering a feature space of N elements �xi, the distance
W (A,B) between two cluster, A and B, corresponds in
Ward’s method to the increase of the within group sum
of squares (WGSS) when they merge. Such measure is
derived from the euclidean distance between the cen-
troids of the two clusters as follows,

W (A,B) = ∑
i∈A∪B

‖�xi −�mA∪B‖2 −∑
i∈A

‖�xi −�mA‖2

− ∑
i∈B

‖�xi −�mB‖2 (1)

=
nAnB

nA +nB
‖�mA −�mB‖2 (2)

where mk denotes the centroid of cluster k and nk the
numbers of elements in it.

In our particular case, when restricting the anal-
ysis to a specific locality, the measured variables
of dengue incidence and climatic conditions can be
grouped into 4-dimensional vectors �xk whose compo-
nents correspond to the measured attributes, namely,
the number of cases, the temperature, the humidity
and the precipitation. A set of N observations in time
is represented by a N × 4 matrix, X, which serves as
input for the clustering analysis. In the next section
we present the clustering results for the three localities
taken into account in this work.

Figure 4. Cluster dendrogram: Classification of Escuintla climatic and dengue incidence data

Results

Cluster analysis for the municipality of Es-
cuintla

The classification of climatic and dengue inci-
dence data resulting from the application of Ward’s
Method to the database created for the municipality
of Escuintla is displayed in Figure 4. An analogous
analysis for Tiquisate and Masagua locations yields
the dendrograms of Figure 5.

Results presented here follow from performing a
cluster analysis endowed with the Ward metric and us-
ing the definition of Euclidean distance. The incidence
data is analyzed together with the historical records of
relevant climatic variables of precipitation, humidity
and temperature. In Figures 4 and 5, the highlighted
rectangles indicate clusters which are highly supported
by data. In all cases, three major groups are identified,
which roughly can be associated to the cases occurred
during the warm, rainy and cold seasons.

A thorough analysis of the incidence data for the
city of Escuintla yields the dendrogram of Figure 6. In
this particular case, the input data consists of a health

information matrix composed by 104 four-week peri-
ods with dengue presence during the years 2003-2010.
Results of the cluster analysis may be summarized as
follows:

• There is a clear separation between two groups,
the four-week periods C5 to C10 (from May to
October) - red alert, and the group of C1 to C4
plus C11 to C13 (from November to April) -
yellow alert group-.

• The red alert group gathers 62% of all reported
cases, being the one with the higher prevalence
of dengue in the few four-week periods C5 to
C10, from 2003-2010.

• The yellow alert group gathers the remaining
38% of all reported cases. This group contains
the largest number of four-week periods and less
incidence of Dengue.

• There are two well defined seasonal strengths of
dengue infection. The red alert group has on av-
erage 43 records per four-week period, while the
yellow alert group has on average 20 records in
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Figure 5. Cluster dendrogram: Classification of Tiquisate and Masagua Climatic and dengue incidence data

the same period. Thus the dengue infection has
the double strength in the red alert group (May
to October) compared to the yellow alert group
(November to April).

• In order to evaluate the reliability of the cluster-
ing process, the multiscale re-sampling method
(bootstrap) has been used. This method makes
the comparison of theoretical-p impartial values
against the normal probabilistic-p values, aimed
at evaluating the uncertainty in the cluster anal-
ysis. The corresponding values for p are given
in percentages. The dendrogram generated for
the city of Escuintla shows the p-values at each

joint of clusters (Figure 6). Clusters having
theoretical-p impartial values higher than 95%,
and therefore strongly supported by the matrix
data, are highlighted by rectangles in the den-
drogram. For those clusters, the hypothesis that
the clustering result is spurious is rejected with
significance level equal to 0.05%. Probabilistic-
p normal values are displayed for the suggested
clusters with 69% confidence.
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Figure 5. Cluster dendrogram: Classification of Tiquisate and Masagua Climatic and dengue incidence data

the same period. Thus the dengue infection has
the double strength in the red alert group (May
to October) compared to the yellow alert group
(November to April).

• In order to evaluate the reliability of the cluster-
ing process, the multiscale re-sampling method
(bootstrap) has been used. This method makes
the comparison of theoretical-p impartial values
against the normal probabilistic-p values, aimed
at evaluating the uncertainty in the cluster anal-
ysis. The corresponding values for p are given
in percentages. The dendrogram generated for
the city of Escuintla shows the p-values at each

joint of clusters (Figure 6). Clusters having
theoretical-p impartial values higher than 95%,
and therefore strongly supported by the matrix
data, are highlighted by rectangles in the den-
drogram. For those clusters, the hypothesis that
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Discussion

Modeling the dengue epidemics with seasonal
forcing

The clustering analysis confirms the strong asso-
ciation between dengue infections and seasonality. It
proved to be useful to determine an average pattern for
the dengue infection during the year.

In order to gain a better insight into the transmis-
sion mechanism of the infection and to provide an ana-
lytic assessment to the seasonal effects on dengue epi-
demics, we may recur to mathematical modeling for
the dynamics of the infection. The standard approach
consists of implementing compartmental epidemic
models (Capasso, 1993), where the transmission of
dengue infection among humans and mosquitoes is in-
corporated by means of interaction terms between in-
fectives and susceptibles in the human and vector pop-
ulation (Brauer, 2008; Keeling & Rohani, 2011). The
basic model for vector-borne disease transmission is
represented by a system of nonlinear ordinary differ-
ential equations that govern the temporal evolution of
the disease, taking into account both human and vector
population dynamics. Here, we shall incorporate the
claim of seasonality by proposing a periodic function
for β , which is the average number of incidences suf-
ficient for transmission per infected individual. This
idea was first developed by K. Dietz in 1976 (Dietz,
1976), when he proposed a sinusoidal forcing to model
the temporal behavior of infections influenced by cli-
matic conditions.

Letting Sh(t), Ih(t) and Rh(t) denote the number
of susceptibles, infectives and recovered in the human
population, and Sm(t) and Im(t) the number of suscep-
tibles and infectives in the mosquito population, the
model can be written in the following form

dSh

dt
= αNh −βShIm −µSh,

dIh

dt
= βShIm − (γ +µ)Ih,

dRh

dt
= γIh −µRh, (3)

dSm

dt
= Λm −β IhSm −µmSm,

dIm

dt
= β IhSm −µmIm,

where the parameters α , γ refer, respectively, to the per
capita natality rate of humans and the recovery rate for
humans. Besides, µ and µm stand for the mortality rate

of humans and the mortality rate of mosquitoes. In the
system of ordinary differential equations (3), the term
βShIm represents the expected number of infections in
humans when there are Sh susceptible individuals.

The total human population in the model is desig-
nated by Nh(t) = Sh(t)+ Ih(t)+Rh(t) , whereas the to-
tal population of mosquitoes is given by Nm = Sm + Im
and is governed by the following differential equation:

dNm

dt
= Λm −µmNm. (4)

For the foregoing discussion, we shall assume that the
human population has constant size with equal birth
and death rate.

The system (3) has been previously used as a
starting point to model the infection of Aedes species
mosquito related diseases. For instance, models for the
dengue and Zika virus are addressed thoroughly by Es-
teva and Vargas (Esteva & Vargas, 1998) and, Bonyah
and Okosun (Bonyah & Okosun, 2016), respectively.
The authors in (Bonyah & Okosun, 2016; Esteva &
Vargas, 1998) have done a complete global analysis
of models related to the system (3), showing that it
is well suited for doing an epidemiological analysis.
The figure 7 depicts the basic transmission dynamics
of dengue between the host and the vector described
by system (3).
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Figure 7. The model for dengue transmission

We now introduce the effects of seasonal trans-
mission in a mechanistic fashion, by constraining the
incidence rate β to be a periodic function of time of
the type

β (t) = β0

[
1+β1 cos

(
2πt
T

)]
, (5)

where β1 parametrizes the strength of the seasonality
and T is the period of seasonality, given in units of

four-week periods. This choice seems to be a valid
add-on to the dynamical model if we rely on a simple
inspection of the yearly dengue and rainfall trends dis-
played in Figure 3. Moreover, the choice (5) for the
rate β is supported by the strong association estimated
by the cluster analysis. The value of the period T can
be fine tuned from the observed pattern discussed in
the previous section. Our first guess is that β has a
one year period variation, so that T = 13 in four-week
periods units.

Sinusoidal forcing implemented by Eq.5 is com-
monly used to represent a generic and somehow
heuristic description of the seasonal variation, without
giving much insight into the underlying processes of
the seasonal drivers of transmission. However, it is
shown elsewhere that this sinusoidal function is likely
to represent a linear transformation of a weather co-
variate (Ponciano & Capistrán, 2011).

Figure 8. Model outputs using the estimated ML parameters
for years 2007 and 2010

In order to evaluate the ability of the system (3),
endowed with (5) for modelling the dengue incidence
in the municipality of Escuintla, we checked its ade-
quacy against the reported data.

Among all the parameters of the model, we con-
sidered β0, β1, γ , Sh(0), Ih(0), Rh(0), SM(0) and Im(0)
as free parameters. The parameter estimation was per-
formed by means of the maximum likelihood, using
the available time series of local Dengue infections.

The likelihood function, L(α), were α is the vec-
tor of free parameters, was defined assuming the re-
ported number of cases as independent realizations
of a Poisson distribution. In such a case, as pointed
out previously (Ponciano & Capistrán, 2011; Sprott,
2008), the likelihood function is defined by the prod-
uct of the individual probability distribution functions

Figure 9. Model outputs using the estimated ML parameters
for years 2011 and 2012

Figure 10. Model output using the estimated ML parameters
corresponding to the time period 2010-2012.

of the observations, that is to say

L(α) =
n

∏
i=0

e−Ihi(α) (Ihi(α))yi

yi
, (6)

where Ihi(α) is the predicted number of infections in
the i-th four-week, yi stands for the reported number
of infected individuals in the i-th four-week, and α =
(β0,β1,γ,Sh(0), Ih(0),Rh(0),SM(0), Im(0)). It can be
readily seen that maximizing the likelihood function is
equivalent to minimizing the negative log-likelihood.
Therefore, in order to find the maximum likelihood es-
timates, we have applied the well known Powell conju-
gate direction method (Powell, 1964) in a python code
for solving the system (3). The model outputs for dif-
ferent periods calculated with the estimated parame-
ters are displayed in Figures 8 and 9. Those results
were obtained by normalizing the vector of number of
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the i-th four-week, yi stands for the reported number
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(β0,β1,γ,Sh(0), Ih(0),Rh(0),SM(0), Im(0)). It can be
readily seen that maximizing the likelihood function is
equivalent to minimizing the negative log-likelihood.
Therefore, in order to find the maximum likelihood es-
timates, we have applied the well known Powell conju-
gate direction method (Powell, 1964) in a python code
for solving the system (3). The model outputs for dif-
ferent periods calculated with the estimated parame-
ters are displayed in Figures 8 and 9. Those results
were obtained by normalizing the vector of number of
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cases to the maximum reported number during a given
time period. The figures show precisely the normal-
ized number of infected humans versus time. As it can
be appreciated, the incorporation of seasonality in the
force of infection provides fairly acceptable estimates
for the incidence trends.

The above results suggest the hypothesis that the
rainfall behavior can be used alone as a weather covari-
ate for predicting the evolution of dengue disease in re-
gions where the temperature and the humidity are both
favorable for vector proliferation. Assuming the valid-
ity of such a claim, the family of compartmental mod-
els, related to system (3), could provide a predictive
scenario for the force of dengue infection disease. Pre-
sumed scenarios should arise by taking into account
the history of the infection together with the actual
rainfall pattern when fixing the initial conditions in (3).
Figure 10 shows the model predictions for dengue in-
cidence corresponding to years 2010-2012 compared
to the actual reported incidence for that period of time.
The initial conditions obtained by the maximum likeli-
hood method reproduce the first incidence peak, while
the estimated parameters for the force of infection en-
sures the steady oscillatory pattern which predicts sea-
sonality.

Final remarks

The statistical analysis and mathematical mod-
elling of epidemiological phenomena is an active area
which helps understanding the dynamics and hidden
mechanisms of infection diseases. Despite the exis-
tence of an extense literature about seasonal infectious
disease epidemiology, there is still much to be inves-
tigated to better grasp the sensitivity of infectious dis-
eases to environmental, biological or social parame-
ters. In this work, we presented a statistical and math-
ematical analysis to understand the mechanisms for
seasonal dengue infection dynamics in areas of dengue
endemicity. Reported historical data show that peaks
in dengue incidence occur roughly during the same
time of the year as precipitation peaks. An estima-
tion of how annual variation in climate modulates the
disease incidence peaks is thus meaningful.

In a first step, we classified the incidence of
dengue for a given region and time period in associ-
ation with the variables of precipitation, temperature
and humidity by using a hierarchical clustering analy-
sis. Precipitation was found to have the major associ-
ation to the observed incidence pattern for the region
under investigation. On these grounds, this variable

was proposed as an adequate parameter for shaping
seasonal dengue epidemic dynamics on the framework
of compartmental epidemic models.

This study may be considered as a starting point
for classifying the risk of dengue outbreaks by mon-
itoring the weather behavior. As such, it could be
implemented programatically for planning health re-
sources on the basis of quantitative studies about
the risk of infection diseases caused by Aedes genus
mosquitoes. Certainly, a spatial analysis of dengue
fever outcomes will improve the proposal of a surveil-
lance strategy based on temporal trends (Tran et al.,
2004). An effort in georeferencing dengue cases
should be done in order to address the space-time pat-
terning problem.
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cases to the maximum reported number during a given
time period. The figures show precisely the normal-
ized number of infected humans versus time. As it can
be appreciated, the incorporation of seasonality in the
force of infection provides fairly acceptable estimates
for the incidence trends.

The above results suggest the hypothesis that the
rainfall behavior can be used alone as a weather covari-
ate for predicting the evolution of dengue disease in re-
gions where the temperature and the humidity are both
favorable for vector proliferation. Assuming the valid-
ity of such a claim, the family of compartmental mod-
els, related to system (3), could provide a predictive
scenario for the force of dengue infection disease. Pre-
sumed scenarios should arise by taking into account
the history of the infection together with the actual
rainfall pattern when fixing the initial conditions in (3).
Figure 10 shows the model predictions for dengue in-
cidence corresponding to years 2010-2012 compared
to the actual reported incidence for that period of time.
The initial conditions obtained by the maximum likeli-
hood method reproduce the first incidence peak, while
the estimated parameters for the force of infection en-
sures the steady oscillatory pattern which predicts sea-
sonality.

Final remarks

The statistical analysis and mathematical mod-
elling of epidemiological phenomena is an active area
which helps understanding the dynamics and hidden
mechanisms of infection diseases. Despite the exis-
tence of an extense literature about seasonal infectious
disease epidemiology, there is still much to be inves-
tigated to better grasp the sensitivity of infectious dis-
eases to environmental, biological or social parame-
ters. In this work, we presented a statistical and math-
ematical analysis to understand the mechanisms for
seasonal dengue infection dynamics in areas of dengue
endemicity. Reported historical data show that peaks
in dengue incidence occur roughly during the same
time of the year as precipitation peaks. An estima-
tion of how annual variation in climate modulates the
disease incidence peaks is thus meaningful.

In a first step, we classified the incidence of
dengue for a given region and time period in associ-
ation with the variables of precipitation, temperature
and humidity by using a hierarchical clustering analy-
sis. Precipitation was found to have the major associ-
ation to the observed incidence pattern for the region
under investigation. On these grounds, this variable

was proposed as an adequate parameter for shaping
seasonal dengue epidemic dynamics on the framework
of compartmental epidemic models.

This study may be considered as a starting point
for classifying the risk of dengue outbreaks by mon-
itoring the weather behavior. As such, it could be
implemented programatically for planning health re-
sources on the basis of quantitative studies about
the risk of infection diseases caused by Aedes genus
mosquitoes. Certainly, a spatial analysis of dengue
fever outcomes will improve the proposal of a surveil-
lance strategy based on temporal trends (Tran et al.,
2004). An effort in georeferencing dengue cases
should be done in order to address the space-time pat-
terning problem.
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